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A distributed ledger is a tamperproof sequence of data that can be publicly accessed and 
augmented by everyone, without being maintained by a centralized party. Distributed 
ledgers stand to revolutionize the way a modern society operates. They can secure all kinds 
of traditional transactions, such as payments, asset transfers and titles, in the exact order in 
which the transactions occur; and enable totally new transactions, such as cryptocurrencies 
and smart contracts. They can remove intermediaries and usher in a new paradigm for 
trust. As currently implemented, however, distributed ledgers scale poorly and cannot 
achieve their enormous potential.
In this paper we propose Algorand, an alternative, secure and efficient distributed ledger. 
Algorand is permissionless and works in a highly asynchronous environment. Unlike prior 
implementations of distributed ledgers based on “proof of work,” Algorand dispenses with 
“miners” and requires only a negligible amount of computation. Moreover, its transaction 
history “forks” only with negligible probability: that is, Algorand guarantees the finality of 
a transaction the moment the transaction enters the ledger.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Money is becoming increasingly virtual. It has been estimated that about 80% of United States dollars today only exist as 
ledger entries [9]. In an ideal world, in which we could count on a universally trusted central entity, immune to all possible 
cyber attacks, money could be solely electronic. Unfortunately, we do not live in such a world. Accordingly, decentralized 
cryptocurrencies such as Bitcoin [36] and “smart contract” systems such as Ethereum [17] have been proposed. At the heart 
of these systems is a shared ledger that reliably records a sequence of transactions, as varied as payments and contracts, in 
a tamperproof way. The technology of choice to guarantee such tamperproofness is the blockchain. Blockchains are behind 
applications such as cryptocurrencies (most prominently, Bitcoin [36]), financial applications (e.g., [17]), and the Internet of 
Things (e.g., [42]). Several techniques to manage blockchain-based ledgers have been proposed: proof of work [36], proof of 
stake [41], practical Byzantine fault-tolerance [5], or some combinations of them.

✩ This paper is based on early versions of the arXiv paper by the second author [32], a paper itself based on [24]. Algorand’s technologies are the 
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Currently, however, ledgers can be inefficient to manage. For example, Bitcoin’s proof-of-work approach (based on the 
original concept of [15]) requires a vast amount of computation, is wasteful and scales poorly. In addition, it de facto con-
centrates power in few hands.

We therefore wish to put forward a new method to implement a distributed ledger that offers the convenience and 
efficiency of a centralized system run by a trusted and inviolable authority, without the inefficiencies and weaknesses of 
current decentralized implementations. We call our approach Algorand, because we crucially rely on algorithmic randomness 
for its efficiency.

For concreteness, in this paper we focus on Algorand as a payment system. Essentially, each user is identified with 
his public key. The system starts with an initial set of users, each owning a given amount of money. The initial status is 
assumed to be common knowledge. At any time, each public key can make a payment: that is, transfer all or part of the 
money it currently owns to another public key, by means of a digital signature. Roughly said, the goal of the system is to 
organize all payments into an ordered sequence of blocks, B1, B2, . . ., each containing a set of payments, so as to guarantee 
the following three properties in absence of any centralized authority: (P1) each block quickly becomes universally known; 
(P2) all payments in each block Br are valid, relative to the amount of money each payer owns according to the initial 
status and the payments in preceding blocks; and (P3) each valid payment quickly appears in a block.

Our model. In our system we assume the availability of a digital signature scheme secure in the sense of [23], such that each 
message has a unique valid signature (even when a public key is adversarially chosen); see [34] for an example. We also 
assume the availability of a random oracle [22]—or a hash function H modeled as a random oracle, as done in Bitcoin.

Our system is permissionless: any user can join at any time. The mechanism for a player to join Algorand is the same main 
mechanism for joining Bitcoin. Namely, a new user i joins the system when an already-existing user j makes a payment 
to i.1

The users have individual and asynchronous clocks, and all honest users’ clocks have the same speed. Colloquially, 
“a minute is a minute for all of them.” Users communicate by propagating messages (i.e., via peer-to-peer gossiping) [11].2

We assume that each message m whose propagation is initiated by an honest user is received by (almost) all honest users 
within a fixed amount of time that solely depends on m’s length.3 Specifically, as our system envisages only two classes 
of messages—control messages which are several hundred bits long, and blocks which are (chosen to be) several mega-bytes 
long, we let λ and � be the time upper-bounds for the two classes, respectively. A similar communication model is consid-
ered by [37] for analyzing Bitcoin in asynchronous networks. Following [20], it is well known that consensus is impossible 
to achieve in a totally asynchronous network by any deterministic protocol, where messages may arrive after arbitrarily 
long delays, even with a fixed set of users and a single malicious user. Recently, [28] achieves consensus in the totally 
asynchronous model with fixed users, with expected O (n3) communication and polynomial computation, when the number 
of faulty users is less than n

106 .
In this paper we consider a powerful but computationally bounded Adversary, which (1) instantaneously corrupts any 

user he wants, whenever he wants; (2) chooses the actions of all corrupted users; and (3) introduces new users into the 
system whenever he wants. At no time, however, can the corrupted users collectively own more than 1/3 of the total amount 
of money in the system. Also, the Adversary cannot forge signatures of honest users except with negligible probability. It 
is important to emphasize that the Adversary fully determines when each user receives a specific message, as long as it 
is within the corresponding time bound. Thus, messages may reach different users under different orders and at different 
times.

Algorand’s high-level structure. Algorand is an asynchronous distributed protocol organized in rounds. Conceptually, rounds 
are non-overlapping time intervals for a single user, but different users’ consecutive rounds may overlap due to asynchrony. 
Round r is devoted to construct the r-th block, Br . Each user i starts his own round r the moment he is sure about 
block Br−1.

At the highest level, round r starts by randomly selecting and publicizing (the identity of) a user, �r , the round leader. 
The leader constructs, digitally signs, and propagates a block B , which is his own candidate for the r-th block and includes 
a set of new and valid payments. Next, a small set of selected verifiers, S V r , referred to as the committee, is randomly chosen 
and publicized. The size of the committee is such that, with overwhelming probability it has at least a 2/3 honest majority. 
The committee reaches Byzantine agreement [40,19,13,30] on the block B proposed by �r . Upon termination, each honest 
verifier locally outputs his own block, whose hash value he digitally signs and propagates. Block Br is defined to be the 
block that has been signed by a given number of properly chosen verifiers. We now summarize the performance of our 
protocol.

1 Indeed, we focus on Algorand as a payment system. In principle, any user may join the system by publicizing his public key. However, a key with 0 
balance cannot make payment to others or participate in block-building, thus we ignore their existence.

2 Essentially, when a message m is propagated, every user i receiving m for the first time randomly and independently selects a small number of active 
users, his “neighbors”, to whom he forwards m, possibly until he receives their acknowledgments. The propagation terminates when no user receives m for 
the first time.

3 Our protocol works if m is received by a sufficiently high fraction, say 95%, of the honest users, within a fixed amount of time. To simplify the 
discussions, we will not deal with this scenario in the analysis.
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Theorem 1. (informally stated) The following properties hold with overwhelming probability for each round r ≥ 0:

• All honest users agree on the same block Br , and all payments in Br are valid.
• Let h > 2/3 be the fraction of money in the system collectively owned by honest users, and ph = h2(1 + h − h2). The leader �r is 

honest with probability at least ph.
• When �r is honest, the block Br is generated by �r and round r takes at most 4λ + � time.
• When �r is malicious, round r takes in expectation at most ( 12

ph
+ 8)λ + � time.

• All honest users become sure about Br within time λ of each other.

Indeed, different from all other existing blockchains, Algorand essentially never “forks”. A user of Algorand can rely on a 
new block Br as soon as his own round r terminates, and all honest users quickly learn about the agreement on Br .

Forthcoming work. In this paper we present and analyze Algorand under widely-adopted network assumptions for distributed 
ledgers, where messages propagated by honest users reach all honest users within a bounded amount of time. In a forth-
coming paper, we strengthen our protocol by allowing the Adversary to arbitrarily partition the network for an arbitrarily 
long time. Essentially, for a large interval of time, the Adversary is allowed to complete control the delivery of messages: 
fully determining which message is delivered to which user and at what time, without any bounded time guarantee.

In other forthcoming papers we will also discuss quite different concerns, such as how to properly distribute initial 
money so as to accelerate the adoption of the system, and incentive mechanisms. Note that traditional cryptocurrencies 
require incentives. For example, in Bitcoin, since miners have to consume and pay for a lot of electricity, incentives are 
necessary to reimburse them for their large expenses. By contrast, in Algorand, the required amount of computation is 
trivial, thus there is little to reimburse. This said, it is possible to introduce incentives in Algorand. However, in line with 
Algorand’s mathematically rigorous approach, these incentives are engineered so as to be able to prove that they do not 
interfere with our stated liveness and soundness properties. (For instance, in the case of Bitcoin, the rise of mining pools 
can be attributed to a set of poorly engineered incentives.) It is thus to be expected that incentive engineering in Algorand 
is a separate project.

2. Main challenges and overview of algorand

Implementing the high-level structure of Algorand to achieve the desired properties of a blockchain requires meeting 
notable challenges. We now briefly discuss the challenges and our techniques.

From honest majority of users to honest majority of money. In Algorand a real person may own arbitrarily many public keys. To 
avoid Sybil attacks [14], each public key is selected to be a leader or a verifier with probability proportional to the amount 
of money owned by it. In particular, our protocol works under the honest-majority-of-money (HMM) assumption. To highlight 
our main techniques, however, we start by assuming that each user owns only one public key, and present the system in 
Sections 4 and 5 under the simpler honest-majority-of-user (HMU) assumption. In Section 6, we show how to modify our 
protocol to work under the HMM assumption.

Cryptographic self-selection. It is easy to randomly and publicly select �r and S V r from the set of users, based on r or H(Br−1). 
However, even though the latter is random, the identities of the selected users become public right away, and our powerful 
Adversary could immediately corrupt them before they could honestly take any action. In addition, since our system is 
permissionless, the Adversary could bring in any user i he wants, once he realizes that i will be �r or in S V r .

Instead, we introduce cryptographic self-selection. Assume for a moment that at the very beginning of round r, a quantity 
Q r is, by magic, randomly selected and made universally available. Then, each current user i is able to privately compute 
the (256-bit) string xr

i = H(S IGi(Q r)): that is, digitally sign Q r and then hash it. Note that xr
i is not only random, but also 

unique to i and r. This is because Q r is uniquely and publicly associated to r, and because the adopted signature scheme 
guarantees that at most one string can be i’s digital signature of Q r . The string xr

i is interpreted to be the binary expansion 
of a (256-bit) number between 0 and 1. If this number is less than a given threshold pv ∈ (0, 1), then i is a member of 
S V r and σ r

i � S IGi(Q r) is his committee credential. If xr
i is smaller than another threshold pl < pv , then i is a potential 

leader. For potential leaders, we only care that at least one of them is honest with reasonable probability, thus it suffices to 
randomly select only a few dozen users as potential leaders.

We will discuss the selection of the quantity Q r in a moment. For now it is important to note that, under cryptographic 
self-selection, whether or not an honest user i is a potential leader or a verifier is known only by himself, until after user 
i has fulfilled his duty according to his selected role. Indeed, since the Adversary cannot predict S IGi(Q r), H(S IGi(Q r)) is 
totally random to him.

Cryptographic self-selection is crucial not only to the security of Algorand, but also to its efficiency. To have millions 
of users engage in a communication protocol to select the leader �r and the committee S V r would be totally unwieldy. 
By contrast, in Algorand each user i selects himself without the need to communicate with anyone. He does so by only 
performing fast internal computation: one digital signature and one hash. That is, i runs his own lottery: a lottery that is 
guaranteed to be fair and produces an unforgeable winning ticket when he wins.
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Timing guarantee. Different from existing blockchains where all honest users will eventually accept the same block Br , Al-
gorand ensures that all honest users make up their mind about the same Br within a small and fixed amount of time 
from each other. More precisely, this amount is λ, the upper-bound of the time by which a short control message (e.g., a 
credential) propagated by an honest user reaches the other honest users. Note that this amount does not depend on the 
size of the blocks.

This timing guarantee cannot be taken for granted, as Algorand does not require synchronized clocks, neither does a user 
know how many messages he should expect. More importantly, the underlying Byzantine agreement does not guarantee 
that all users will halt in the same step: when an honest user halts, he knows that all honest users eventually halt. The 
users are offset by at most 3 steps in the Byzantine agreement, but this is not enough for Algorand. To solve this problem, 
Algorand utilizes the propagation network and associates with each block Br a proper certificate, generated besides the 
output of the Byzantine agreement. Different users may see different certificates for the same Br . When an honest user 
sees his own certificate at his own time t , not only he knows an agreement has been reached on Br , he also knows all the 
other honest users know the agreement within a time interval around t , of length at most λ. As shown in the protocol, this 
time-offset is shorter than a single step in the Byzantine agreement.

Leader selection. As soon as a user i is sure about block Br−1, he secretly checks whether he is a potential leader for round r. 
If so, he secretly prepares and digitally signs Br

i , his proposal for block Br . Then he propagates Br
i and, at the same time 

but as a separate message, his credential σ r
i . Upon receiving σ r

i , every user can verify its authenticity: namely, by verifying 
i’s signature of Q r and by comparing its hash with pl . The leader �r of round r is defined to be the user whose hashed 
credential is the smallest among all potential leaders. However, no individual user knows whom the leader is unless he has 
seen the credentials of all potential leaders.

Of course, upon receiving σ r
i , the Adversary learns that i is a potential leader and can immediately corrupt i. However, 

he cannot “confiscate” Br
i or σ r

i . Indeed, both strings are already being virally propagated, and the Adversary cannot do 
more to stop them than a government could with a message propagated by Wikileaks.

Leveraging our time invariant, if a user i becomes sure about block Br−1 at (his own!) time t , i knows that by time 
t + λ all honest users are sure about Br−1. Thus, by time t + 2λ, i knows that he has received the credentials of all honest
potential leaders. Then, i compares the hashes of all received credentials and individually decides �r

i , the leader of round r
in i’s opinion, to be the potential leader whose credential’s hash is the smallest among those received by i by time t + 2λ.

If the leader �r is honest, then �r
i = �r for all honest users i. This guarantee, however, does not hold when �r is malicious. 

For instance, a malicious �r may start propagating his credential not when he becomes sure about Br−1, but sufficiently 
later, so that only some users receive it “in time” according to their own clocks, and �r

i = �r only for them. This confusion 
about the round-r leader may translate into initial confusion about the r-th block.4 Fortunately, we are able to resolve this 
confusion and any other attack that the Adversary may launch by the subsequent Byzantine agreement (BA), and ensure 
that all honest users will end up with the same block Br .

A special byzantine agreement protocol. Asking all users to participate in a BA protocol is highly infeasible and unscalable, as 
the system may have millions of users. Instead, in Algorand only users in S V r are called to reach agreement on Br . The 
initial value of each verifier i in the BA protocol is the hash of the block that he received from �r

i . Upon termination, every 
honest verifier i outputs the same hash H(Br), which he digitally signs and propagates together with his credential. This 
enables all users to learn Br , by seeing which block is endorsed by sufficiently many verifiers.

For the BA protocol to work, not only must the selected committee have a 2/3 honest majority, it also needs to satisfy 
several stronger conditions formalized in Section 4. The expected committee size (e.g., thousands of users) is much smaller 
than the number of users in the system, but is still too large to run traditional BA protocols. We meet this challenge by 
(1) designing a new BA protocol based on the recent binary Byzantine agreement (BBA) protocol of [33] for synchronous 
environments; and (2) successfully adapting it to our substantially asynchronous environment. Our BA protocol starts with 
a graded consensus protocol (GC) and continues with the protocol B B A� of [33]. It is extremely efficient in a synchronous 
setting: for any number of players n with n ≥ 3t + 1, where t is the maximum number of dishonest players, it finishes in 
11 steps in expectation.

A new challenge, however, arises in our setting. In particular, although the Adversary cannot pre-determine which honest 
users are in S V r , the members of S V r must propagate their credentials together with their first messages for the BA 
protocol, in order to establish whose messages should be taken into consideration. Once they do, our powerful Adversary 
can immediately corrupt them and oblige them to send the messages he wants for all future steps. Indeed, cryptographic 
self-selection suffices to secure the potential leaders’ messages, as each potential leader essentially only sends a single 
message (i.e., a block). Things are more challenging in the BA protocol, because the members of S V r must continue to send 
messages over several steps.

We meet this additional challenge via a novel property of our BA protocol: player-replaceability. That is, no internal 
states need to be maintained by a player from one step to another, and the protocol correctly reaches consensus even if 
each step is executed by a totally new (independently and randomly selected) set of players. Accordingly, we do not ask 
each user i to select himself for participating the entire BA protocol. Rather, user i secretly determines whether he is a 

4 In addition, the malicious �r may propagate different proposed blocks to different users.
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selected verifier for each step s. Specifically, i ∈ S V r,s if and only if H(S IGi(r, s, Q r)) < pv , and i’s corresponding credential 
is σ r,s

i � S IGi(r, s, Q r). When his time to act in step s arrives, i propagates σ r,s
i together with his (r, s)-message mr,s

i . Once i
has done so, the Adversary may certainly corrupt him, but cannot stop mr,s

i from reaching the other honest users. Moreover, 
by corrupting i, the Adversary has no more control on the rest of the BA protocol than he has by corrupting a random 
users: the verifiers of all future steps will be randomly and independently selected.

The quantity Q r . As said, cryptographic self-selection hinges on a random quantity Q r to become universally available only 
at the start of round r. In Algorand Q r is deduced from the just-agreed block Br−1, thus any user who is sure about Br−1

is able to compute Q r by himself.
For this approach to work, we must overcome the following difficulty. If the leader �r−1 of round r − 1 were malicious, 

he could examine many blocks and choose one to propose, so that a malicious user will be the leader of round r with 
high probability. Namely, �r−1 chooses Br−1 and thus Q r such that H(S IGi(Q r)) is very small for some malicious user i. To 
avoid this problem and a score of similar ones, we ensure that Q r is substantially out of the control of �r−1. Essentially, we 
let Q r � H(σ r−1

�r−1 , r), where σ r−1
�r−1 is the unique credential of �r−1 for being a potential leader.

Still, another problem lurks on. When �r−1 is malicious, Q r may be known by the Adversary even before round r − 1
starts. Even if no existing malicious user i has H(S IGi(Q r)) very small, in our permissionless system the Adversary can 
bring in a new malicious user j, choosing his public key so that H(S IG j(Q r)) is unusually small and j becomes the leader 
of round r with high probability. We handle this problem by demanding that all users eligible to become potential leaders 
or verifiers in round r of the protocol must already be in the system by round r − k, where the look-back parameter k is a 
fixed and suitably large integer (e.g., k = 100). This works if Q r were totally unpredictable to the Adversary in round r − k, 
because at that round the Adversary would not know which user/public-key would be more advantageous for him to bring 
into the system.

But: is Q r totally unpredictable at round r − k? The fact that H is a random oracle and Q r = H(σ r−1
�r−1 , r) certainly helps, 

but the full story is more complex. Indeed, we want the system secure not only under the attacks listed here, but under all
attacks the Adversary may be able to launch, including those that haven’t been identified yet. We defer the technical details 
to Section 5. In a nutshell, with the above construction of Q r and a suitable choice of the look-back parameter k, we show 
via a Markov-chain-based analysis that, if the honest majority among all users is h, then the probability that the leader of 
round r is honest is close to h.

Ephemeral keys. Although the Adversary cannot predict beforehand which users will be the leader or the verifiers of round r, 
he would know their identities after seeing their messages, and could then corrupt all of them and oblige them to certify a 
fake block B̃r . Since this block might be propagated after the legitimate one, users that have been paying attention would 
not be fooled.5 Nonetheless, B̃r would be syntactically correct and we want to prevent it from being manufactured.

We do so via ephemeral keys. Essentially, for his round-r-step-s message, each verifier i ∈ S V r,s uses an ephemeral public 
key pkr,s

i . Different from his long-term public key, which identifies him (e.g., when he signs a payment), pkr,s
i is single-use-

only and, once used, i will destroy the corresponding secret key skr,s
i . Thus, if a verifier is corrupted later on, the Adversary 

cannot force him to sign anything else he did not originally sign. Naturally, we must ensure that it is impossible for the 
Adversary to compute a fake new key p̃k

r,s
i and convince an honest user that it is the ephemeral key of i ∈ S V r,s for step s

of round r. This goal can be achieved via Merkle trees [31], but costly. Instead, we achieve it via a novel use of identity-based 
signature [44]; see Section 8.

3. Related work

Blockchains (i.e., sequences of blocks, each containing the hash of the previous one, so as to guarantee the tamperproof-
ness of all their data) go back to Nakamoto [36] and are used by almost all later proposals, including ours.6 In a very 
recent paper [21], Gilad, Hemo, Micali, Vlachos and Zeldovich have validated the scalability of Algorand, in a realistic and 
challenging setting.

Bitcoin and proof-of-work. Bitcoin was the first cryptocurrency based on proof-of-work: a block includes a random string ρ , 
and a user tries different ρ ’s until the hash of the block has a desired number of leading 0’s. This approach is very expensive. 
Currently, the electronic power consumed for block generation in Bitcoin is comparable to that consumed by the entire 
country of Iceland [4]. The consumption may dramatically increase in the future, if new users join the system. By contrast, 
in Algorand, block generation requires only a negligible amount of computation.

Bitcoin assumes that malicious entities do not have the majority of the computational power devoted to block generation. 
Else, they would be able to modify the blockchain as they please. Unfortunately, Bitcoin causes the power of generating 

5 Consider corrupting the news anchor of a major TV network and broadcasting today that Clinton won the last presidential election. Most of us would 
recognize it as a hoax. But someone getting out of a coma might be fooled.

6 An earlier version of this paper [7] also introduces blocktrees, built on top of our blockchain and helping prove the content of a past block in a much 
more convenient manner. We do not discuss blocktrees in this version of the paper. Structures different from simple blockchains are also considered in 
[29,38].
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blocks to fall into fewer and fewer hands. Today, due to the exorbitant amount of computation required, a user trying to 
generate a new block using an ordinary desktop expects to lose money, as his expected cost for the necessary electrical-
power exceeds his expected reward. Only using pools of specially built computers that do nothing but “mine new blocks”, 
one might expect to make a profit. Thus, today there are, de facto, two disjoint classes of Bitcoin users: ordinary users, who 
only make payments, and specialized mining pools, which only search for new blocks. It should therefore not be a surprise 
that, as of recently, the total computation power for block generation concentrates within just five pools. In such a system, 
the assumption that a majority of the computational power is honest becomes less credible.

Another problematic aspect of Bitcoin is that the (longest) blockchain is not always unique. Indeed, its latest portion 
often forks: the blockchain may be—say—B1, . . . , Bk, B ′

k+1, B
′
k+2, according to one user, and B1, . . . , Bk, B ′′

k+1, B
′′
k+2 according 

to another user. Only after several blocks have been added to the chain, can one be reasonably sure that a block is stable: 
that is, is part of the blockchain according to all users. Thus, rather than relying right away on the payments contained 
in the last-added block, one should wait for the block to be sufficiently deep in the blockchain. In sum, proof-of-work 
approaches (e.g., [36] and [17]) are quite orthogonal to ours.

Protocols without proof-of-work. Random sortition/selection was practiced across centuries—e.g., by the republics of Athens, 
Florence, and Venice [45]. In modern judicial systems, it is often used to choose juries. Recently, it has also been advocated 
for elections [6]. In our protocol, we resort to cryptography in order to select each verifier set S V r,s in a way that is 
guaranteed to be automatic (i.e., requiring no message exchange) and random.

Our approach could be considered as a pure form of proof-of-stake (PoS) [41]. In popular PoS protocols (e.g., [46,3,27]), 
a user i chooses whether to put some of his money as his ‘stake’. The stake of i cannot be spent, and can be confiscated 
if i is caught cheating. The power of i in proposing a new block is proportional to his stake. A problem with this approach 
is that, in general, a user cannot afford to render ‘hostage’ but a small portion of his total money. Accordingly, it is quite 
possible that the system falls prey to malicious people with big pockets, posting large stake in order to gain control of the 
system. The fact that their stakes are confiscated, if they are caught cheating, may not be a credible deterrent: the money 
they may gain by cheating may vastly exceed their stake. By contrast, in Algorand, every user always has all her money at 
her disposal, and her total money (as opposite to the portion that she can afford to put at stake) determines her power in 
block building. Moreover, Algorand needs not to confiscate any money: so long as the majority of the money is in honest 
hands, subverting the system is impossible.

Delegated proof-of-stake (e.g., [2,16]) is another popular PoS approach. Here, a fixed set of delegates are given the power 
of block building for a fixed amount of time. Thus, a powerful Adversary could corrupt all delegates or mount a denial-of-
service attack against them, so as to prevent them from receiving new transactions that should be put in a new block. By 
contrast, in Algorand the Adversary never knows which users are in charge of block building until it is too late.

The work closest to ours is Sleepy Consensus by Pass and Shi [39]. They also rely on (and kindly credit) Algorand’s 
cryptographic self-selection. But several significant differences exist. In particular, their setting is mainly permissioned and 
they rely on a Nakamoto-style protocol, thus forks are frequent and one has to wait that a block becomes sufficiently deep 
in the chain. By contrast, Algorand’s blockchain forks only with negligible probability and a new block can be immediately 
relied upon, even though the Adversary corrupts users immediately and adaptively.

Another work close to ours is the Ouroboros protocol by Kiayias, Russell, David, and Oliynykov [26]. Also their system 
appeared after ours. It uses cryptographic selection to dispense with proof-of-work in a provable manner, but the selection is 
not secret and the Adversary knows the selected users beforehand. They circumvent this problem by limiting the Adversary’s 
corruption power. In particular, corruptions are subject to a delay measured in rounds linear in the security parameter. 
Also relying on Algorand’s cryptographic self-selection, Ouroboros Praos [10] now allows corruptions without delay. Both 
Ouroboros protocols are again Nakamoto-style, thus forks are both unavoidable and frequent. Moreover, their systems are 
highly synchronous. By contrast, Algorand is fork-free with overwhelming probability, and does not rely on any of these 
conditions.

Finally, practical Byzantine fault tolerance [5] is a weaker form of Byzantine agreement,7 and very different from our 
protocol.

4. The Algorand protocol

4.1. Summary of notions and notations in the protocol

• r ≥ 0 and s ≥ 1: the current round and the current step (in a given round).
• m: the maximum number of steps in a round.
• H and ⊥: a random oracle and a distinguished string outside the range of H .
• P AY r : the payset (i.e., the set of payments) of round r.

7 Essentially, PBFT is a deterministic 3-step protocol, with the set of players fixed and publicly known in advance. A given player proposes a value and 
all other players use the protocol to try to reach agreement on it. However, as implied by [20], any t-step deterministic protocol cannot guarantee to reach 
Byzantine agreement if there are at least t + 1 malicious players. Thus an honest player in the protocol, rather than outputting a value with the guarantee 
that all honest users will output the same value, is allowed to output an extra default value “?”, interpreted as “I don’t know what the value should be”. 
When this occurs, various deterministic mechanisms exist to replace the proposer with another player, until an honest one is found. For such mechanisms 
therefore, it is easy for the Adversary to figure out which minority of the users to corrupt so as to prevent agreement for a long time.
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• �r : the leader of round r.
• Br : the block of round r, which can be non-empty or empty. Br � (r, H(Br−1), S IG�r (Q r−1), P AY r) if non-empty; Br =

Br
ε � (r, H(Br−1), Q r−1, ∅) if empty.8

• Head(Br): the head of Br —that is, the first three components in Br .
• Q r : the seed of round r (for determining the potential leaders and verifiers of the next round).

Q r � H(S IG�r (Q r−1), r), if Br is non-empty; Q r � H(Q r−1, r), if Br is empty.
• P K r : the set of public keys by the end of round r − 1 and at the beginning of round r.9

• k: the look-back parameter.
• pl: the probability of a user being a potential leader.
• P Lr : the set of potential leaders of round r, {i ∈ P K r−k : .H(S IGi(r, 1, Q r−1)) ≤ pl}. �r � arg mini∈P Lr H(S IGi(r, 1, Q r−1)), 

with ties broken lexicographically.
• pv : the probability of a user being a verifier.
• S V r,s: the set of verifiers of step s of round r.

S V r,s = {i ∈ P K r−k : .H(S IGi(r, s, Q r−1)) ≤ pv} for s > 1; and S V r,1 � P Lr .
• σ r,s

i : the credential of a user i in S V r,s (or in P Lr for s = 1)—i.e., S IGi(r, s, Q r−1).
• tH : the number of signatures needed to certify a block.
• C E RT r : a certificate of Br , containing Head(Br) and tH signatures of H(Br) from proper verifiers of round r. A user 

i is sure about Br if he possesses C E RT r . A user i knows Br if he possesses both Br and C E RT r . The C E RT r seen by 
different users may be different.

• � and λ: � upper-bounds the time to propagate a (non-empty) block, and λ upper-bounds the time to propagate one 
short message per verifier in a step s ≥ 1.10 Note that a block with an empty payset is essentially a short message, thus 
its propagation time is upper-bounded by λ. We assume � = O (λ). Essentially, � and λ respectively upper-bound the 
time needed to execute Step 1 and the time needed for any other step of the Algorand protocol.

4.2. The protocol

The Algorand protocol starts at time 0 with r = 0. Since there does not exist “B−1” or “C E RT −1”, syntactically B−1 is a 
parameter including a random string Q −1, and all users know B−1 at time 0.

In each step s of a round r, a verifier i ∈ S V r,s uses his long-term public-secret key pair to produce his credential 
σ r,s

i = S IGi(r, s, Q r−1), as well as S IGi
(

Q r−1
)

in case s = 1. Wlog the signatures are message-retrievable: if sigi(m) is 
i’s signature for m that is not message-retrievable, then S IGi(m) � (i, m, sigi(m)). Verifier i uses his ephemeral key pair, 
(pkr,s

i , skr,s
i ), to sign any other message m. We use esigi(m) rather than sigpkr,s

i
(m) to denote i’s ephemeral signature of m

in this step, and E S IGi(m) for the corresponding message-retrievable signature.

Step 1: Block Proposal

Instructions for every user i ∈ P K r−k: User i starts his own Step 1 of round r as soon as he has C E RT r−1 (thus is sure 
about Br−1), which allows i to unambiguously compute H(Br−1) and Q r−1.

• User i uses Q r−1 to check whether i ∈ P Lr or not. If i /∈ P Lr , he does nothing for Step 1.

• If i ∈ P Lr , that is, if i is a potential leader, then he does the following.
1. If i knows B0, . . . , Br−1, then he collects the round-r payments that have been propagated to him so far 

and computes a maximal valid payset P AY r
i from them.a

2. If i hasn’t known all B0, . . . , Br−1 yet, then he sets P AY r
i = ∅.

3. Next, i computes his candidate block Br
i = (r, H(Br−1), S IGi(Q r−1), P AY r

i ).

4. Finally, i computes the message mr,1
i = (Br

i , esigi(H(Br
i )), σ

r,1
i ), destroys his ephemeral secret key skr,1

i , 
and then propagates two (r, 1)-messages, mr,1

i and (Head(Br
i ), σ

r,1
i ), separately but simultaneously.b

a P AY r
i is valid if for every user j, the total payment of j in P AY r

i is at most what j owns after block Br−1. If there are multiple payments of 
j with the total amount exceeding what j owns, then i chooses a maximal valid subset of them. Other rules are also possible: for example, j’s 
payments may all be considered invalid in this case.

b When i is the leader, Head(Br
i ) (in particular, S IGi(Q r−1)) allows others to compute Q r = H(S IGi(Q r−1), r).

8 A non-empty block may still contain an empty payset P AY r . However, a non-empty block implies the identity of �r , his credential σ r,1
�r and S IG�r (Q r−1)

have all been timely revealed. The protocol guarantees that if �r is honest then Br is non-empty with overwhelming probability.
9 In a non-synchronous system like ours, the notions of “the end of round r − 1” and “the beginning of round r” need to be carefully defined. Mathe-

matically, P K r is computed from the initial status and the blocks B1, . . . , Br−1: it is the set of public keys each owning a positive amount of money after 
Br−1.
10 Using elliptic-curve signatures with 32-byte keys as in Bitcoin, a verifier message is at most 200 bytes in Algorand.
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Selective Propagation

The technique of selective propagation does not affect the protocol’s correctness or worst-case performance as stated 
in Theorem 1, thus readers focusing on the theoretical analysis can safely skip this paragraph. However, when the 
protocol is implemented in practice, to shorten the actual execution of the whole round it is important that the (r, 1)-
messages are selectively propagated, to reduce the network congestion. Indeed, (r, 1)-messages include blocks of large 
sizes, at most one of which may become the block of round r. It is thus unnecessary to have all blocks propagated to 
the whole network. More precisely, for every user j in the system,

• For the first (r, 1)-message that he ever receives and successfully verifies,a whether it contains a block or is just 
a credential and a block head, player j propagates it as usual.

• For all the other (r, 1)-messages that player j receives and successfully verifies, he propagates it only if the 
hash of its credential is the smallest among the hashes of the credentials contained in all (r, 1)-messages he has 
received and successfully verified so far.

• However, if j receives two different messages of the form mr,1
i from the same player i (thus i is malicious), he 

discards the second one no matter what the hash value of i’s credential is.
It is useful that in Step 1 each potential leader i propagates his credential σ r,1

i separately from his message mr,1
i

which contains the actual block.b Credentials are much smaller than blocks and thus travel faster. Selective propagation 
thus ensures that only a few blocks, those from potential leaders whose credentials have small hashes, are propagated 
to the full network. All other proposed blocks will quickly stop being propagated.

a That is, all the signatures are correct and, if it is of the form mr,1
i , both the block and its hash are valid.

b We thank Georgios Vlachos for suggesting this.

Step 2: The First Step of the Graded Consensus Protocol GC

For every user i ∈ P K r−k: User i starts his own Step 2 of round r as soon as he has C E RT r−1.
• User i waits a maximum amount of time t2 � λ + �. While waiting, i acts as follows.

1. After waiting for time 2λ, he finds the user � such that H(σ r,1
� ) ≤ H(σ r,1

j ) among all credentials σ r,1
j

contained in the successfully verified (r, 1)-messages he has received so far.a

2. If he has known B0, . . . , Br−1, and if he has received from � a valid message mr,1
� = (Br

�, esig�(H(Br
�)), σ

r,1
� ),b

then i stops waiting and sets vi � (H(Br
�), �).

3. Otherwise, when time t2 runs out, i sets vi �⊥.

4. Once the value of vi is set, i computes Q r−1 from C E RT r−1 and checks whether i ∈ S V r,2.

5. If i ∈ S V r,2, i computes mr,2
i � (E S IGi(vi), σ r,2

i ),c destroys his ephemeral secret key skr,2
i , and then prop-

agates mr,2
i . Otherwise, i stops without propagating anything.

a Essentially, user i privately decides that the leader of round r is user �.
b The protocol guarantees that i has seen C E RT 0, . . . , C E RT r−1 when starting round r. If Br

� contains an empty payset, then there is actually no 
need for i to see B0, . . . , Br−1 before verifying whether Br

� is valid or not.
c mr,2

i signals that i considers H(Br
�) to be the hash of the next block, or considers the next block to be empty.

Step 3: The Second Step of GC

For every user i ∈ P K r−k: User i starts his own Step 3 of round r as soon as he has C E RT r−1.
• User i waits a maximum amount of time t3 � t2 + 2λ = 3λ + �. While waiting, i acts as follows.

1. If there exists a value v such that he has received at least tH valid messages mr,2
j of the form 

(E S IG j(v), σ r,2
j ),a then he stops waiting and sets vi � v .

2. Otherwise, when time t3 runs out, he sets vi �⊥.

3. Once the value of vi is set, i computes Q r−1 from C E RT r−1 and checks whether i ∈ S V r,3.

4. If i ∈ S V r,3, i computes mr,3
i � (E S IGi(vi), σ r,3

i ), destroys his ephemeral secret key skr,3
i , and then propa-

gates mr,3
i . Otherwise, i stops without propagating anything.

a If he has received two valid messages from a user j, respectively containing E S IG j(v) and a different E S IG j(v ′), then they are counted for v
and v ′ respectively, even though they together imply that j is malicious.
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Step 4: The Output of GC and The First Step of The Binary Byzantine Agreement B B A�

For every user i ∈ P K r−k: i starts his own Step 4 of round r as soon as he finishes his own Step 3.
• User i waits a maximum amount of time 2λ.a While waiting, i acts as follows.

1. He computes vi and gi , the output of GC, as follows.
(a) If there exists a value v 	= ⊥ such that he has received at least tH valid messages mr,3

j =
(E S IG j(v), σ r,3

j ), then he stops waiting and sets vi � v and gi � 2.

(b) If he has received at least tH valid messages mr,3
j = (E S IG j(⊥), σ r,3

j ), then he stops waiting and 
sets vi � ⊥ and gi � 0.b

(c) Otherwise, when time 2λ runs out, if there exists a value v 	= ⊥ such that he has received at least 

 tH

2 � valid messages mr, j
j = (E S IG j(v), σ r,3

j ), then vi � v and gi � 1.c

(d) Else, when time 2λ runs out, he sets vi � ⊥ and gi � 0.

2. Once the values vi and gi are set, i computes bi , the input of B B A� , as follows:
bi � 0 if gi = 2, and bi � 1 otherwise.

3. i computes Q r−1 from C E RT r−1 and checks whether i ∈ S V r,4 or not.

4. If i ∈ S V r,4, he computes mr,4
i � (E S IGi(bi), E S IGi(vi), σ r,4

i ), destroys his ephemeral secret key skr,4
i , and 

propagates mr,4
i . Otherwise, i stops without propagating anything.

a Thus, the maximum total amount of time since i starts his round r could be t4 � t3 + 2λ = 5λ + �.
b Whether sub-step (b) is in the protocol or not does not affect its correctness. However, the presence of sub-step (b) allows Step 4 to end faster 

if sufficiently many Step-3 verifiers have “signed ⊥.”
c It can be proved that the v in this case, if exists, must be unique.

Step s, 5 ≤ s ≤ m, s − 2 ≡ 0 mod 3: A Coin-Fixed-To-0 Step of B B A�

For every user i ∈ P K r−k: i starts his own Step s as soon as he finishes his own Step s − 1.
• User i waits a maximum amount of time 2λ.a While waiting, i acts as follows.

– Ending Condition 0: If at any point there exists a string v 	= ⊥ and a step s′ such that
(a) 5 ≤ s′ ≤ s, s′ − 2 ≡ 0 mod 3—that is, Step s′ is a Coin-Fixed-To-0 step,

(b) i has received ≥ tH valid messages mr,s′−1
j = (E S IG j(0), E S IG j(v), σ r,s′−1

j ), and

(c) i has received a valid message (Head(Br
�), σ

r,1
� ) where � is the second component of v ,

then, i stops waiting and ends his own execution of round r right away; sets H(Br) to be the first com-
ponent of v; and sets his own C E RT r to be the set of messages mr,s′−1

j of sub-step (b) together with 
(Head(Br

�), σ
r,1
� ).b

– Ending Condition 1: If at any point there exists a step s′ such that
(a’) 6 ≤ s′ ≤ s, s′ − 2 ≡ 1 mod 3—that is, Step s′ is a Coin-Fixed-To-1 step, and

(b’) i has received ≥ tH valid messages mr,s′−1
j = (E S IG j(1), E S IG j(v j), σ r,s′−1

j ),c

then, i stops waiting and ends his own execution of round r right away without propagating anything as 
a (r, s)-verifier; sets Br = Br

ε ; and sets his own C E RT r to be the set of messages mr,s′−1
j of sub-step (b’) 

together with Head(Br
ε).

– If at any point he has received ≥ tH valid (r, s −1)-messages mr,s−1
j of the form (E S IG j(1), E S IG j(v j), σ r,s−1

j ), 
then he stops waiting and sets bi � 1.

– Otherwise, when time 2λ runs out, i sets bi � 0.d

– Once the value bi is set, i computes Q r−1 from C E RT r−1 and checks whether i ∈ S V r,s .

– If i ∈ S V r,s , i computes the message mr,s
i � (E S IGi(bi), E S IGi(vi), σ r,s

i ) with vi being the value he has 
computed in Step 4, destroys his ephemeral secret key skr,s

i , and then propagates mr,s
i . Otherwise, i stops 

without propagating anything.

a Thus, the maximum total amount of time since i starts his round r could be ts � ts−1 + 2λ = (2s − 3)λ + �.
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b User i now knows H(Br ) and is sure about Br . If he hasn’t received Br yet, he just needs to wait until Br is propagated to him. He still helps 
propagating messages as a generic user, but does not initiate any propagation as a (r, s)-verifier. In particular, he has helped propagating all messages 
in his C E RT r , which is enough for our protocol.

c In this case, it does not matter what the v j ’s are.
d That is, when user i does not see enough signatures for 1, he fixes his “coin” bi to 0. In the next step, which is a Coin-Fixed-To-1 step, if user i

does not see enough signatures for 0 then he fixes his “coin” bi to 1.

Step s, 6 ≤ s ≤ m, s − 2 ≡ 1 mod 3: A Coin-Fixed-To-1 Step of B B A�

For every user i ∈ P K r−k: i starts his own Step s as soon as he finishes his own Step s − 1.
• User i waits a maximum amount of time 2λ. While waiting, i acts as follows.

– Ending Conditions 0 and 1: The same instructions as in a Coin-Fixed-To-0 step.

– If at any point he has received ≥ tH valid (r, s −1)-messages mr,s−1
j of the form (E S IG j(0), E S IG j(v j), σ r,s−1

j ), 
then he stops waiting and sets bi � 0.

– Otherwise, when time 2λ runs out, i sets bi � 1 (i.e., “coin fixed to 1”).

– Once the value bi is set, i computes Q r−1 from C E RT r−1 and checks whether i ∈ S V r,s .

– If i ∈ S V r,s , i computes the message mr,s
i � (E S IGi(bi), E S IGi(vi), σ r,s

i ) with vi being the value he has 
computed in Step 4, destroys his ephemeral secret key skr,s

i , and then propagates mr,s
i . Otherwise, i stops 

without propagating anything.

Step s, 7 ≤ s ≤ m, s − 2 ≡ 2 mod 3: A Coin-Genuinely-Flipped Step of B B A�

For every user i ∈ P K r−k: i starts his own Step s as soon as he finishes his own step s − 1.
• User i waits a maximum amount of time 2λ. While waiting, i acts as follows.

– Ending Conditions 0 and 1: The same instructions as in a Coin-Fixed-To-0 step.

– If at any point he has received ≥ tH valid (r, s −1)-messages mr,s−1
j of the form (E S IG j(0), E S IG j(v j), σ r,s−1

j ), 
then he stops waiting and sets bi � 0.

– If at any point he has received ≥ tH valid (r, s −1)-messages mr,s−1
j of the form (E S IG j(1), E S IG j(v j), σ r,s−1

j ), 
then he stops waiting and sets bi � 1.

– Otherwise, when time 2λ runs out, letting S V r,s−1
i be the set of (r, s − 1)-verifiers from whom he has 

received a valid message mr,s−1
j , and letting � = arg min j∈S V r,s−1

i
H(σ r,s−1

j ), i sets bi � lsb(H(σ r,s−1
� , r)), 

where lsb is the least significant bit.a

– Once the value bi is set, i computes Q r−1 from C E RT r−1 and checks whether i ∈ S V r,s .

– If i ∈ S V r,s , i computes the message mr,s
i � (E S IGi(bi), E S IGi(vi), σ r,s

i ) with vi being the value he has 
computed in Step 4, destroys his ephemeral secret key skr,s

i , and then propagates mr,s
i . Otherwise, i stops 

without propagating anything.

a Since H is a random oracle, user i “flips a (almost unbiased) coin” to decide his own bit bi in this step, if he does not see enough signatures for 
0 or for 1.

Reconstruction of the Round-r Block by Generic Users

For every user i in the system: i starts his own round r as soon as he has C E RT r−1.
• i follows the instructions of each step, participates the propagation of all messages, but does not initiate any 

propagation in a step where he is not a verifier.

• i ends his own round r by entering Ending Condition 0 or Ending Condition 1 in some step, with the corre-
sponding C E RT r .

• From there on, he starts his round r + 1 while waiting to receive the actual block Br (if he hasn’t already 
received it), whose hash H(Br) has been pinned down by C E RT r . Of course, if C E RT r indicates that Br = Br

ε , 
then i knows Br the moment he has C E RT r .

Our protocol guarantees that each round finishes within m steps with overwhelming probability, thus we do not find it 
necessary to deal with the rare case where it doesn’t finish. A variant of the protocol is to not explicitly impose an upper-
bound m on the number of steps.
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5. Analysis of Algorand

5.1. The Byzantine agreement in classical settings

The notion of Byzantine agreement was introduced by Pease, Shostak and Lamport [40] for the binary case, that is, when 
every initial value consists of a bit. It was quickly extended to arbitrary initial values (see the surveys of Fischer [19] and 
Chor and Dwork [8]). By a BA protocol, we mean an arbitrary-value one.

As a warm up, let us describe the Byzantine agreement B A� of Algorand in classical settings. Specifically, there are n
players and at most t of them are malicious, with n ≥ 3t + 1. Players have synchronized clocks and peer-to-peer communi-
cation, and messages are delivered immediately. The protocol B A� consists of two parts: the Graded Consensus protocol GC , 
where each player i outputs a value vi together with a grade of certainty gi ; and the binary Byzantine agreement B B A�

of [33]. To be consistent with Algorand, below we call the first step of GC “Step 2”. Before GC starts, each player i has 
received a private input v ′

i . For each player i, step s and string x, let #s
i (x) denote the number of players from whom player 

i has received x in step s. Following the literature’s convention and without loss of generality, n = 3t + 1 in the description 
below.

The Graded Consensus Protocol GC

STEP 2. Each player i sends his private input v ′
i to all players.

STEP 3. Each player i sends to all players the string x if and only if #2
i (x) ≥ 2t + 1.

OUTPUT DETERMINATION. Each player i outputs the pair (vi, gi) computed as follows:
• If #3

i (x) ≥ 2t + 1 for some x, then vi = x and gi = 2.

• Else, if #3
i (x) ≥ t + 1 for some x, then vi = x and gi = 1.

• Else, vi = ⊥ and gi = 0.

Remark. The notion of graded consensus is derived from that of graded broadcast, put forward by Feldman and Micali in 
[18] by strengthening the notion of a crusader agreement, which was introduced by Dolev [12] and refined by Turpin and 
Coan [47]. In [18], the authors provided a 3-step graded broadcasting protocol for n ≥ 3t + 1. A more complex graded 
broadcasting protocol for n ≥ 2t + 1 has later been found by Katz and Koo [25].

The lemma below essentially follows from the graded broadcasting protocol in [18], thus its proof has been omitted.

Lemma 5.1. When n ≥ 3t + 1, the protocol GC satisfies the following properties:

1. For any two honest players i and j, |gi − g j | ≤ 1.
2. For any two honest players i and j, if gi > 0 and g j > 0, then vi = v j .
3. If there exists a value v such that v ′

i = v for all honest players i, then vi = v and gi = 2 for all honest players i.

We now describe the protocol B A� , again starting with Step 2 to match the steps in Algorand. The initial value of each 
player i is v ′

i .

The Byzantine Agreement Protocol B A�

STEPS 2 AND 3. Each player i executes the two steps of GC, with private input v ′
i .

STEP 4. Each player i computes his output (vi, gi) of GC and sets his private binary input for B B A� as follows: b′
i = 0 if gi = 2, and 

b′
i = 1 otherwise. Player i then executes the first step of B B A�: that is, he sends b′

i to all players.
STEPS 5, . . . Each player i executes the remaining steps of B B A� , until he is able to halt and compute his binary output, bi , according 

to B B A� .
OUTPUT DETERMINATION. Each player i outputs the value outi , computed as follows: outi = vi if bi = 0, and outi = ⊥ if bi = 1.

Remark. The protocol B B A� is a probabilistic binary BA protocol and is analyzed in [33]. In the worst case, it finishes in 
9 steps in expectation. Probabilistic binary BA protocols were first proposed by Ben-Or in asynchronous settings [1]. The 
protocol B B A� is a novel adaptation to public-key settings of the binary BA protocol of [18], which was the first to work 
in an expected constant number of steps. It worked by having the players themselves implement a common coin, a notion 
proposed by Rabin [43], who implemented it via an external trusted party.
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To analyze B A� , recall that an arbitrary-value Byzantine agreement is such that, for any set of values V not containing 
the special symbol ⊥, when the players’ initial values are from V , every honest player halts with probability 1 and the 
following two properties hold with probability 111:

1. Agreement: There exists out ∈ V ∪ {⊥} such that outi = out for all honest players i.
2. Consistency: If all honest players have the same initial value v ∈ V , then out = v .

We have the following theorem.

Theorem 5.2. When n ≥ 3t + 1, B A� is an arbitrary-value Byzantine agreement.

Proof. We first prove Consistency. Assume there exists some value v ∈ V such that v ′
i = v for all honest players i. By 

property 3 of Lemma 5.1, after the execution of GC , all honest players i have vi = v and gi = 2, thus b′
i = 0 at the beginning 

of B B A� . As B B A� is a binary Byzantine agreement, by its own Consistency property, bi = 0 for all honest players i at the 
end of its execution. Accordingly, for all honest players i, outi = vi = v at the end of B A� , as desired.

We now prove Agreement, and we distinguish two cases. Case 1: There exists an honest player i with gi = 2 at the end of GC.
In this case, by property 1 of Lemma 5.1, all honest players j have g j ≥ 1. Thus, by property 2 of Lemma 5.1, there exists 
a value v such that vi = v for all honest players i at the end of GC , even though their grades may differ. Since B B A� is 
a binary BA protocol, by its Agreement property, there exists b ∈ {0, 1} such that bi = b for all honest players i at the end 
of B B A� . If b = 1, then all honest players i output outi = ⊥: that is, out = ⊥. If b = 0, then all honest players i output 
outi = vi = v: that is, out = v . Thus Agreement holds.

Case 2: All honest players i have gi ≤ 1 at the end of GC. In this case, b′
i = 1 for all of them. By the Consistency property of 

B B A� , bi = 1 for all of them after B B A� . Thus all honest players i have outi = ⊥, and Agreement holds.
Since both Consistency and Agreement hold, B A� is an arbitrary-value BA protocol. �
As illustrated by the descriptions of Algorand and B A� , the former is much more complex than the latter, because 

achieving consensus in the former’s setting is much more challenging than in the classical setting. Next we analyze Algorand
itself, and we start by introducing the notions and notations used in the analysis.

5.2. Summary of notions and notations in the analysis

• M S V r,s and H S V r,s: the set of malicious verifiers and the set of honest verifiers in S V r,s .

• nl ∈ Z+ and n ∈ Z+: the expected cardinality of P Lr(= S V r,1) and of every S V r,s for s > 1. pl � nl
|P K r−k | and 

pv � n
|P K r−k | .

• h ∈ (2/3, 1]: the fraction of honest users in each P K r .

• F ∈ (0, 1): the allowed error probability.

• ph ∈ (0, 1): the probability that the leader of a round r, �r , is honest. Ideally ph = h. With the existence of the 
Adversary, the value of ph will be determined in the analysis.

• αr,s
i and βr,s

i : respectively the (local) time a user i starts and ends his Step s of round r. Recall that in Algorand, the 
users’ clocks need not be synchronized, but have the same speed. Only for the purpose of the analysis, we consider a 
reference clock and measure the players’ related times with respect to it.

• Lr ≤ m/3: a random variable representing the number of Bernoulli trials needed to see a 1, when each trial is 1 with 
probability ph

2 and there are at most m/3 trials. If all trials fail then Lr � m/3. Essentially, Lr upper-bounds the time 
needed to generate block Br .

• T r : the time when the first honest user is sure about Br−1. T 0 = 0 by initialization.

• Ir : the time interval [T r, T r + λ] for r ≥ 1. I0 � {0}.

• ts: the maximum amount of time since a user i starts his round r till the end of his Step s. Following the description 
of the protocol, ts � (2s − 3)λ + � for s ≥ 2. t1 � 0.

• Relationships among various parameters.
— The verifiers and potential leaders of round r are selected from the users in P K r−k , where k is set so that the 

Adversary cannot predict Q r−1 back at round r − k − 1 with probability better than F : otherwise, he will be 
able to introduce malicious users for round r − k, all of which will be potential leaders/verifiers in round r, 
succeeding in having a malicious leader or a malicious majority in S V r,s for some steps s chosen by him.

11 Such a Byzantine agreement is said to have soundness 1. In general, a Byzantine agreement has soundness σ ∈ (0, 1) if Agreement and Consistency hold 
with probability at least σ .
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— For Step 1 of each round r, nl is chosen so that with overwhelming probability, S V r,1 	= ∅.

— For each step s > 1 of round r, n and tH are chosen so that, with overwhelming probability,

|H S V r,s| > tH and |H S V r,s| + 2|M S V r,s| < 2tH .

The two inequalities together imply that |M S V r,s| < tH/2 and |H S V r,s| > 2|M S V r,s|. In particular, S V r,s has a 
2/3 honest majority. The closer to 1 the value of h is, the smaller n needs to be. We use (variants of) Chernoff 
bounds to ensure the desired conditions.

• Example choices of important parameters.
— The outputs of H are 256-bit long.

— h = 80% and nl = 35.

— � = 1 minute and λ = 10 seconds.

— F = 10−18. (With this error probability, if a new block is generated every second, one should expect for the age 
of the Universe to see a fork.)

— n ≈ 4000, tH ≈ 0.69n, k = 70, and m = 180.

In the analysis we will ignore the computation time, as it is negligible compared to the time needed to propagate 
messages. In any case, by using slightly larger λ and �, the computation time can be incorporated into the analysis directly. 
Most of the statements below hold “with overwhelming probability,” and we may not repeatedly emphasize this fact in the 
analysis.

5.3. Main theorem

Theorem 1. The following properties hold with overwhelming probability for each round r ≥ 0:
1. All honest users agree on the same block Br , and all payments in Br are valid.

2. When the leader �r is honest, we have the following.
• The block Br is generated by �r and all honest users know Br in the time interval Ir+1.

• If P AY r = ∅ then T r+1 ≤ T r + 6λ; otherwise Br contains a maximal payset received by �r by time αr,1
�r and T r+1 ≤

T r + 4λ + �.

• Let Br′
be the last block before Br with a non-empty payset. If �r′

was honest or if T r − T r′+1 ≥ �, then P AY r 	= ∅.12

3. When the leader �r is malicious, all honest users become sure about Br in the time interval Ir+1, and T r+1 ≤ T r +(6Lr +8)λ +�.

4. ph = h2(1 + h − h2) for Lr , and the leader �r is honest with probability at least ph.

Remarks. Before proving the theorem, let us make two remarks.
• Block-Generation and True Latency. The time to generate block Br is defined to be T r+1 − T r : that is, the difference 

between the first time some honest user becomes sure about Br and the first time some honest user becomes sure 
about Br−1. When the round-r leader is honest, Property 2 of Theorem 1 guarantees that the exact time to generate 
Br is at most 4λ +�,13 no matter what the precise value of h > 2/3 may be. When the leader is malicious, Property 3 
implies that the expected time to generate Br is at most ( 12

ph
+ 8)λ +�,14 again no matter the precise value of h. How-

ever, the overall expected time to generate Br depends on the precise value of h. By Property 4, ph = h2(1 + h − h2)

and the leader is honest with probability at least ph , thus

E[T r+1 − T r] ≤ h2(1 + h − h2) · (4λ + �)

+ [1 − h2(1 + h − h2)][( 12

h2(1 + h − h2)
+ 8)λ + �].

12 If �r′
was malicious and started propagating Br′

late, then some honest users may not have received Br′
by the end of round r′ , even though they knew 

H(Br′
). However, all honest users would have received Br′

by time T r′+1 + � in the worst case.
Our protocol actually guarantees a stronger property. Strictly speaking, we could introduce two additional parameters: �c upper-bounds the amount 

of time that remains to propagate a block B to (almost) all honest users when at least a constant c fraction of them have already received it; and βr′,2

is the time the last honest verifier in S V r′,2 finishes Step 2 of round r′ . Then P AY r 	= ∅ as long as T r − βr′,2 ≥ �c , with c ≥ 1/4. Note that �c can be 
much smaller than �, as a message being propagated spreads exponentially fast. Also note that the delay caused by the Adversary is now charged to the 
remaining steps of round r′ rather than to future rounds.

More specifically, the fact that an agreement has been reached on H(Br′
) implies a constant fraction of honest verifiers in Step 2 of round r′ had 

received Br′
when they finished that step. Since these verifiers are randomly chosen from all honest users, a constant c fraction of all honest users had 

received Br′
by time βr′,2. So in the case that �r′

is malicious, not only P AY r is non-empty whenever T r − βr′,2 ≥ τc , but also it is non-empty with 
probability at least c even when T r − βr′,2 < τc .
13 Without loss of generality, � ≥ 2λ and round r takes longer when P AY r is non-empty than when it is empty.
14 That is, E[T r+1 − T r ] ≤ (6E[Lr ] + 8)λ + � = (6 · 2

p + 8)λ + � = ( 12
p + 8)λ + �.
h h
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For instance, if h = 80% then E[T r+1 − T r] ≤ 9.2λ + �.

• λ vs. �. Note that the size of the messages sent by the verifiers in a step in Algorand is dominated by the length of 
the digital signature keys, which can remain fixed, even when the number of users is enormous. Also note that, in 
any step s > 1, the same expected number n of verifiers can be used, whether the number of users is 100 K, 10 M, 
or 100 M. This is so because n solely depends on h and F . In sum, therefore, barring a sudden need to increase 
the length of secret keys, the value of λ remains the same no matter how large the number of users may be in the 
foreseeable future.
By contrast, given any transaction rate, the number of transactions grows with the number of users. Therefore, to 
process all new transactions in a timely fashion, the size of a block should also grow with the number of users, 
causing � to grow too. Thus, in the long run, we should have λ << �. Accordingly, it is proper to have a larger 
coefficient for λ, and actually a coefficient of 1 for �.

Now we highlight the framework for proving Theorem 1 and the key components.

Proof of Theorem 1. We prove Properties 1–3 by induction. By the initialization of the protocol, they automatically hold for 
“round −1” when r = 0.

Since Br−1 is uniquely defined by the inductive hypothesis, the set S V r,s is uniquely defined for each step s of round r. 
By the choice of nl , (P Lr =)S V r,1 	= ∅ with overwhelming probability, thus the leader �r is well defined. We now state the 
following two lemmas, respectively proved in Sections 5.4 and 5.5, distinguishing whether �r is honest or not.

Lemma 5.3 (Completeness Lemma). Assume Properties 1–3 hold for rounds 0, . . . , r − 1. When the leader �r is honest, Properties 1 
and 2 hold for round r.

Lemma 5.4 (Soundness Lemma). Assume Properties 1–3 hold for rounds 0, . . . , r − 1. When the leader �r is malicious, Properties 1 
and 3 hold for round r.

Following the above two lemmas, Properties 1–3 hold by induction. Finally, we restate Property 4 as the following lemma, 
which is proved in Section 5.6.

Lemma 5.5. Given Properties 1–3 for each round before round r, ph = h2(1 +h −h2) for Lr , and the leader �r is honest with probability 
at least ph.

Combining the three lemmas together, Theorem 1 holds. �
The proofs of the above three lemmas have some common ingredients that are worth distilling out separately. First, 

Lemma 5.6 below shows several important timing properties about each round r. In particular, it shows that the honest 
users in our protocol act “almost simultaneously”, even though they have asynchronous clocks. Second, Lemma 5.7 below 
shows an important counting property about each round r. Essentially, this property corresponds to the requirement that 
n ≥ 3t + 1 for the Byzantine agreement in classical settings.

Lemma 5.6. Assume Properties 1–3 hold for rounds 0, . . . , r − 1. For each step s ≥ 1 of round r:

(a) For any honest user i, αr,1
i = αr,2

i = αr,3
i ∈ Ir , and βr,s

i ≤ αr,1
i + ts .

(b) If s 	= 2 then for any two honest users i and i′ , |βr,s
i − β

r,s
i′ | ≤ λ. That is, all honest users finish their Step s within time λ of each 

other.
(c) If an honest user i has waited the maximum amount of time required by Step s, then by time βr,s

i , she has received all messages 
sent by all honest verifiers in H S V r,s−1 .

Proof. Property (a) follows directly from the inductive hypothesis and the description of the protocol. Indeed, player i
becomes sure about Br−1 in the time interval Ir and starts her own Steps 1, 2, 3 of round r right away. Thus αr,1

i = αr,2
i =

αr,3
i ∈ Ir by definition. Moreover, the maximum total time user i would have waited from the beginning of her round r to 

the end of Step s is ts by definition, and βr,s
i ≤ αr,1

i + ts .
Next, we prove Properties (b) and (c) together, by induction on s. The initial steps are Steps 1, 2 and 3. When s = 1, 

β
r,1
i = αr,1

i ∈ Ir for user i, and βr,1
i′ = αr,1

i′ ∈ Ir for user i′ . Thus

|βr,1
i − β

r,1
i′ | ≤ λ

and Property (b) holds. Property (c) does not apply to s = 1.
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When s = 2, Property (b) does not apply.15 For Property (c), note that user i finishes Step 2 at time βr,2
i = αr,2

i + t2 =
αr,2

i + λ + �. Since all honest users finish their Step 1 within time λ of each other, by time αr,1
i + λ = αr,2

i + λ, all honest 
potential leaders in H S V r,1 have sent out their (r, 1)-messages. Accordingly, by time αr,2

i + 2λ user i has received all of 
their short messages (i.e., the head of their proposed blocks and their credentials); and by time αr,2

i + λ + � user i has 
received all of their proposed blocks. Thus Property (c) holds.

When s = 3, Property (c) is the easier one to show. Because βr,3
i = αr,3

i + t3 = αr,3
i + t2 +2λ, and because all honest users 

start their Steps 1, 2 and 3 within the time interval Ir , by time αr,3
i + λ + t2 all honest verifiers in H S V r,2 have finished 

their Step 2 and sent out their (r, 2)-messages. Thus by time αr,3
i + t2 + 2λ user i has received all of their messages, and 

Property (c) holds.
For Property (b) with s = 3, without loss of generality assume user i finishes her Step 3 before user i′ finishes his: 

namely, βr,3
i ≤ β

r,3
i′ . If user i has waited time t3 from her beginning of round r, then

β
r,3
i = αr,3

i + t3 ≤ β
r,3
i′ .

As they both started their Step 3 within Ir , αr,3
i′ ≤ αr,3

i + λ and by Property (a)

β
r,3
i′ ≤ αr,3

i′ + t3 ≤ αr,3
i + t3 + λ.

Thus

|βr,3
i − β

r,3
i′ | = β

r,3
i′ − β

r,3
i ≤ λ.

If instead user i finishes her Step 3 before time αr,3
i + t3, it must be that she has received at least tH valid (r, 2)-messages 

for the same value v . As user i has helped propagating those messages, by time at most βr,3
i + λ user i′ has received all of 

them, as if their propagations were all initiated by the honest user i. Accordingly, user i′ finishes no later than time βr,3
i +λ: 

either because his own timer for Step 3 has run out, or because he has received tH valid (r, 2)-messages for the same v . 
Thus we again have

|βr,3
i − β

r,3
i′ | ≤ λ,

and Property (b) holds for s = 3.
We now prove Properties (b) and (c) for Step s > 3, assuming they hold for Step s − 1. Again Property (c) is easier to 

show. By the inductive hypothesis, all honest users finish their Step s − 1 no later than βr,s−1
i + λ. As αr,s

i = β
r,s−1
i by the 

definition of the protocol, by time αr,s
i + λ all honest verifiers in H S V r,s−1 have sent out their (r, s − 1)-messages. Thus by 

time αr,s
i + 2λ user i has received all of them. Note that 2λ is the maximum amount of waiting required by Step s. Thus 

Property (c) holds.
Property (b) for Step s > 3 is similar to that for Step 3. By the inductive hypothesis, i and i′ finish their Step s − 1 and 

thus start their Step s within time λ of each other. If both have waited time 2λ in Step s, then they finish Step s within time 
λ of each other. Otherwise, assume user i finishes before user i′ and has waited for less than 2λ time. By the definition of 
the protocol, it must be that user i has received tH valid messages for the same value v or the same bit b, so that he does 
not need to wait the full 2λ time. For example, this happens in sub-steps (a) or (b) if s = 4, and in the Ending Conditions if 
s > 4. No matter which case it is, user i has helped propagating those messages and user i′ will receive all of them no later 
than time βr,s

i + λ. The same tH messages allow user i′ to finish Step s under the same condition as user i did, if i′ has not 
finished it already. Thus βr,s

i′ ≤ β
r,s
i + λ and |βr,s

i − β
r,s
i′ | ≤ λ.

In sum, Properties (b) and (c) hold. �
Lemma 5.7. Assume Properties 1–3 hold for rounds 0, . . . , r − 1. For each step s ≥ 2 of round r, if there exists a value v such that at 
least tH verifiers in S V r,s have signed v in Step s, then there does not exist another value v ′ 	= v with the same length as v, such that 
at least tH verifiers in S V r,s have signed v ′ .

Proof. Note that the verifiers i ∈ S V r,s sign at most two things in Step s using their ephemeral secret keys skr,s
i : a value vi

of the same length as the output of the hash function, and also a bit bi ∈ {0, 1} if s ≥ 4. That is why in the statement of the 
lemma we require that v ′ has the same length as v: of course tH verifiers may have signed both a hash value and a bit. 
The lemma applies no matter what the length of v is.

Assume for the sake of contradiction that there exist two different values v and v ′ of the same length, such that at 
least tH verifiers in S V r,s have signed v using their ephemeral secret keys, and also at least tH verifiers in S V r,s have 

15 Indeed, as users wait for the proposed blocks in Step 2, when they finish this step, they may be time � away from each other in the worst case. This 
is why Step 3 starts together with Steps 1 and 2 rather than after Step 2 finishes. The current design ensures that the honest users will “catch up” in Step 
3 and become at most λ away.
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signed v ′ using their ephemeral secret keys. Some malicious verifiers may have signed both v and v ′ . However, at least 
tH − |M S V r,s| honest verifiers in H S V r,s have signed v , and another group of at least tH − |M S V r,s| honest verifiers in 
H S V r,s have signed v ′ . Since an honest verifier i does not sign both, and since i destroys his ephemeral secret key skr,s

i
before propagating his message, the Adversary cannot forge i’s signature for a value that i did not sign, after learning that i
is a verifier. Accordingly, the total number of verifiers in S V r,s is

|S V r,s| = |H S V r,s| + |M S V r,s| ≥ 2(tH − |M S V r,s|) + |M S V r,s| = 2tH − |M S V r,s|.
However, since the choices of n and tH guarantee |H S V r,s| + 2|M S V r,s| < 2tH with overwhelming probability, we have

|S V r,s| = |H S V r,s| + |M S V r,s| < 2tH − |M S V r,s|,
a contradiction. Therefore Lemma 5.7 holds. �
Remark. Lemmas 5.6 and 5.7 play an important role in later analysis. At a high level, with the time invariants and the 
counting guarantee, we are able to deal with the permissionless, highly asynchronous and highly adversarial setting in a 
way that mimics what happens to the Byzantine agreement in classical settings. This is far from being sufficient though. 
For example, the consensus guarantees of the graded consensus protocol and the BBA protocol haven’t been completely 
restored, as will become clear especially in the proof of the soundness lemma. As a second example, the time needed to 
generate a block is not the same as the number of steps needed for the BA protocol to reach an agreement. On the one 
hand, the maximum amount of waiting time imposed in each step of Algorand guarantees that the honest users’ messages 
are properly pipelined. On the other hand, the fact that the waiting times are not hard constraints16 allows honest users 
to finish as soon as they could, as shown in the proof of the completeness lemma. Third, Algorand continues generating 
one block after another, with different sets of users in charge in each step, while the Byzantine agreement is only about 
achieving consensus once, with a fixed set of users. Whether the Adversary is able to manipulate earlier rounds in order to 
“attack” a targeted round r is beyond the scope of the BA protocol and is analyzed in Section 5.6.

5.4. The completeness lemma

Lemma 5.3 (Completeness Lemma, restated). Assume Properties 1–3 hold for rounds 0, . . . , r − 1. When the leader �r is honest, 
Properties 1 and 2 hold for round r.

Proof. The protocol is easy to analyze when the leader �r is honest, and below we essentially follow it step by step for 
round r.

Recall that Br′
is the last block before Br with a non-empty payset. If �r′

was honest or if T r − T r′+1 ≥ �, then user �r

has known Br′
and all preceding blocks by time T r . Indeed, a non-empty block Br′

with r′ < r must have been signed by at 
least tH verifiers in S V r′,2, and more than half of them are honest. Since the honest verifiers have helped propagating Br′

before finishing their Step 2 of round r′ , Br′
(and all non-empty blocks preceding it) reaches all honest users no latter than 

time � after round r′ finishes: that is, no latter than time T r′+1 + �. The blocks between Br′
and Br have empty paysets 

by the definition of Br′
, thus �r knew them the moment she became sure about them. Accordingly, in this case �r proposes 

in Step 1 a block Br
�r which has a non-empty payset. By the definition of the protocol, Br

�r contains a maximal valid payset 
received by her by time αr,1

�r .
Below we consider how and when the honest users reach agreement on Br . By Lemma 5.6, all honest users start their 

first three steps of round r within the time interval Ir . Following the proof of Property (c) in this lemma, in Step 2 each 
honest user i has received all short messages from the honest verifiers in H S V r,1 by time αr,2

i + 2λ, including the one 
from �r ,17 which consists of (Head(Br

�r ), σ r,1
�r ). By definition, H(σ r,1

�r ) is the smallest among all hash values of the credentials 
of the potential leaders in S V r,1. Therefore no matter which (r, 1)-messages from the malicious verifiers in M S V r,1 have 
been received by user i, i privately identifies �r as the leader of round r.

If Br
�r has an empty payset, then by time αr,2

i + 2λ each honest user i has also received the message mr,1
�r =

(Br
�r , esig�r (H(Br

�r )), σ r,1
�r ). Since �r is honest, mr,1

�r is valid; and user i does not need to know previous blocks to verify 
it, because P AY r

�r = ∅. Thus all honest users i finish Step 2 at time βr,2
i = αr,2

i + 2λ, with all honest verifiers i ∈ H S V r,2

signing and propagating vi = (H(Br
�r ), �r).

If P AY r
�r is non-empty, then by time αr,2

i + t2 each honest user i has received the message mr,1
�r . Not only so, but i has 

also known all previous blocks by then, as αr,2
i + t2 > αr,2

i + � ≥ T r + �, and all previous blocks have been propagated 
before time T r . Thus again all honest verifiers i ∈ H S V r,2 sign and propagate vi = (H(Br

�r ), �r) by the end of their Step 2.

16 Except sub-step 1 of Step 2, where a user “waits for time 2λ” instead of “waits a maximum amount of time 2λ”.
17 This is why the waiting time 2λ in sub-step 1 of Step 2 is a hard constraint rather than a maximum amount.
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When does the last honest user finish Step 2? Note that by time T r +λ all honest users have started both Steps 1 and 2, 
including the leader �r . Thus by time

βr,2 � T r + λ + 2λ

they have all finished Step 2 if P AY r
�r is empty, and this time is

βr,2 � T r + λ + �

if P AY r
�r is non-empty. In particular, although t2 = λ + � and an honest user i may start his Step 2 as late as time T r + λ, 

he only needs to wait at most � time after T r + λ, to receive the non-empty block from �r .
By the choices of n and tH , |H S V r,2| > tH . Thus in Step 3, by Properties (b) and (c) of Lemma 5.6 and by Lemma 5.7, all 

honest users finish after receiving tH (r, 2)-signatures for the same v = (H(Br
�r ), �r). Indeed, there does not exist another v ′

that has been signed by tH verifiers in S V r,2. Accordingly, whether or not an honest user i’s timer for Step 3 has run out, i
finishes Step 3 after receiving tH signatures for v , by time

βr,3 � βr,2 + λ.

By definition of the protocol, all honest verifiers i ∈ H S V r,3 sign and propagate vi = v = (H(Br
�r ), �r) by the end of their 

Step 3.
Step 4 is similar. By time βr,4 � βr,3 + λ, all honest users have received all honest (r, 3)-messages from H S V r,3. Since 

|H S V r,3| > tH and all verifiers in this set have signed v = (H(Br
�r ), �r), all honest users i finish Step 4 by time βr,4 no 

matter whether their timers for this step have run out or not, and they all have vi = v and gi = 2. Again by Lemma 5.7, 
there does not exist another v ′ with tH signatures from S V r,3. Accordingly, all honest verifiers in H S V r,4 have signed and 
propagated vi = (H(Br

�r ), �r) and bi = 0.
Finally, by time βr,5 � βr,4 +λ, all honest users have received all honest (r, 4)-messages from H S V r,4, all signing for v =

(H(Br
�r ), �r) and b = 0. Moreover, they have already received the honest leader �r ’s messages from Step 1. As |H S V r,4| > tH , 

Ending Condition 0 is triggered and all honest users finish round r knowing Br = Br
�r .

Tracing back the running time of each step, if P AY r
�r = ∅ then βr,5 = βr,2 + 3λ = T r + 6λ; otherwise βr,5 = βr,2 + 3λ =

T r + 4λ + �. As all honest users have known Br by time βr,5, the first honest user knows Br no later than that, and we 
have T r+1 ≤ βr,5. Moreover, all honest users get to know Br within λ time after the first honest user knows Br , as it takes 
at most λ time for the short messages in C E RT r seen by the first honest user to be propagated to all of them. That is, they 
all know Br within the time interval Ir+1.

In sum, Properties 1 and 2 hold for round r when the leader �r is honest. �
Remark. When the leader �r is honest, the running time of round r essentially “charges” time λ to each step 3, 4, 5, even 
though the maximum waiting time could be 2λ. This is because (1) the honest leader and honest verifiers always send 
their messages “in time”, as required by the protocol; and (2) the honest messages from a Step s − 1 alone are sufficient 
to ensure that honest users finish their Step s without having to wait for the maximum amount of time, as all honest 
(r, s − 1)-messages agree with each other and there are at least tH of them.

As we will see in the proof of the soundness lemma, a malicious leader �r may cause the honest users to wait for the 
maximum amount of time for each step, thus the running time of round r essentially “charges” time 2λ to each step after 
Step 2. However, the maximum delay caused by a malicious leader is upper-bounded as in Property 3 of Theorem 1, and 
the Adversary can never stop the honest users from reaching agreement on what the r-th block should be, except with 
negligible probability.

5.5. The soundness lemma

To prove the soundness lemma, we first consider how the graded consensus protocol GC behaves in Algorand, assuming 
Properties 1–3 of Theorem 1 hold for rounds 0, . . . , r − 1.

Lemma 5.8. If there exists an honest verifier ̂i ∈ H S V r,4 who finishes her Step 4 of round r with gî = 2, then

• gi ≥ 1 for all honest users i when i finishes his Step 4 of round r;
• there exists a value v 	= ⊥ such that vi = v for all honest users i; and
• there exists a valid message mr,1

� from some verifier � ∈ S V r,1 such that v = (H(Br
�), �).

Proof. Since player î is honest and sets gî = 2, she has received at least tH valid (r, 3)-messages signing for the same value 
v 	= ⊥, and she has set vî = v .

By Lemma 5.7 (with s = 3), there does not exist another value v ′ 	= v such that at least tH verifiers in S V r,3 have signed 
for v ′ . Accordingly, if an honest user i finishes his Step 4 without waiting the whole amount 2λ, he has seen at least tH
valid (r, 3)-messages for some v ′ , which must be v ′ = v . Thus i sets gi = 2 and vi = v as desired.
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If an honest user i finishes his Step 4 after waiting time 2λ, by Property (c) of Lemma 5.6 he has received all the 
honest (r, 3)-messages from H S V r,3. Because |M S V r,3| < tH/2 by the choices of n and tH , more than tH/2 of the valid 
(r, 3)-messages seen by î and signing for v are from honest verifiers in H S V r,3. Thus user i has seen more than tH /2 valid 
(r, 3)-messages signing for v . Accordingly, gi 	= 0. If gi = 2 then it must be that vi = v , again by Lemma 5.7.

If gi = 1, we assume for the sake of contradiction that i has also seen more than tH /2 valid (r, 3)-messages signing for 
a different v ′ . Again because |M S V r,3| < tH/2, at least one honest verifier j ∈ H S V r,3 has signed for v and at least another 
j′ ∈ H S V r,3 has signed for v ′ . As j and j′ are both honest, by the definition of the protocol, j has received at least tH valid 
(r, 2)-messages signing for v and j′ has received at least tH valid (r, 2)-messages signing for v ′ . However, this contradicts 
Lemma 5.7 (with s = 2). Thus it must be that user i sets vi = v if gi = 1, as desired.

Finally, the fact that î has seen at least tH valid (r, 3)-messages signing for v implies at least one honest verifier j ∈
H S V r,3 has signed for v . (Again, |M S V r,3| < tH/2, so actually more than tH/2 honest verifiers in H S V r,3 have signed for v .) 
By definition, j has seen at least tH valid (r, 2)-messages signing for v . Because |M S V r,2| < tH/2, at least one honest verifier 
j′ ∈ H S V r,2 has signed for v . By the definition of the protocol, j′ has received a valid message mr,1

� from some potential 
leader � ∈ S V r,1, and v = (H(Br

�), �). In particular, all payments in Br
� are valid. Therefore Lemma 5.8 holds. �

We now consider the protocol B B A� in Algorand, and we distinguish two cases.

Lemma 5.9. If all honest verifiers i ∈ H S V r,4 finish their Step 4 with gi < 2, then Br = Br
ε , T r+1 ≤ T r + 8λ + � and all honest users 

know Br in the time interval Ir+1.

Proof. This is the complement scenario of Lemma 5.8. In this case, by the definition of the protocol, all honest verifiers in 
H S V r,4 have signed and propagated bi = 1 at the end of their Step 4 as their private inputs to B B A� . As we will see, it 
doesn’t matter what their vi ’s are. Moreover, by Property (a) of Lemma 5.6, all honest users finish their Step 4 no later than 
time

βr,4 � T r + λ + t4.

Because |H S V r,4| > tH and all verifiers in this set have signed for b = 1, by Lemma 5.7, less than tH verifiers in S V r,4

have signed for b′ = 0. For any honest user i, in Step 5, Ending Condition 0 is not triggered, because it looks for tH signatures 
from Step 4 signing for 0.18 Ending Condition 1 does not apply here, because it starts from the first Coin-Fixed-To-1 step, 
Step 6. Moreover, user i does not end Step 5 with bi = 0, because he would have received all honest (r, 4)-messages from 
H S V r,4 signing for b = 1 by the time he is done waiting, following Property (c) of Lemma 5.6. Accordingly, all honest users 
i finish their Step 5 with bi = 1, and they all finish no later than

βr,5 � βr,4 + λ,

by when they have received all honest (r, 4)-messages. Note that similar to the proof of the completeness lemma, only time 
λ is charged for this step because the honest verifiers all start with the same private input.

Step 6 is similar. In particular, there do not exist at least tH signatures from S V r,4 signing for b′ = 0, neither from S V r,5. 
But there exist |H S V r,5| > tH signatures from honest verifiers in H S V r,5 signing for b = 1. Accordingly, Ending Condition 1 
is triggered before an honest user i is done waiting in his Step 6, and i finishes with Br = Br

ε , with his C E RT r containing 
Head(Br

ε) and the set of valid (r, 5)-messages seen by him and signing for b = 1. Moreover, all honest users finish their Step 
6 no later than

βr,6 � βr,5 + λ.

By definition, t4 = 5λ + �. Thus T r+1 ≤ βr,6 = T r + 8λ + �. Moreover, once the first honest user finishes round r, it takes 
no more than λ time for messages in his C E RT r to reach all honest users, thus all of them finish within the time inter-
val Ir+1. �

Note that Lemma 5.9 implies Properties 1 and 3 of Theorem 1 hold when gi < 2 for all honest verifiers in H S V r,4. The 
remaining case corresponds to the scenario of Lemma 5.8 and is more complex.

Lemma 5.10. If there exists an honest verifier î ∈ H S V r,4 who finishes her Step 4 of round r with gî = 2, then Properties 1 and 3 of 
Theorem 1 hold for round r.

18 Essentially, round r ends at a Coin-Fixed-To-0 step s with a non-empty block because of tH signatures signing for 0 from step s − 1, or by “mimicking” 
an earlier Coin-Fixed-To-0 step s′ . Here s′ = s = 5. In later analysis, it is possible s′ < s, because the Adversary may hide malicious verifiers’ signatures in 
Step s′ − 1 and release them late.
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Proof. By the definition of the protocol, bî = 0. By Lemma 5.8, there exists a valid message mr,1
� such that � ∈ S V r,1 and 

vi = (H(Br
�), �) for all honest users i after Step 4. However, the verifiers in H S V r,4 may not have an agreement on their bi ’s.

We now consider the following event E: there exists a step s∗ ≥ 5 such that, for the first time in the BBA protocol, some player 
i∗ ∈ S V r,s∗ should enter an Ending Condition, thus should stop without propagating anything. We use “should stop” to emphasize 
the fact that, if player i∗ is malicious, then he may pretend that he should not stop according to the protocol and propagate 
messages of the Adversary’s choice.

More specifically, by the construction of the protocol, when E occurs, either

(E.0) i∗ is able to collect or generate at least tH valid messages mr,s′−1
j = (E S IG j(0), E S IG j(v), σ r,s′−1

j ) for some v 	= ⊥
and s′ , with 5 ≤ s′ ≤ s∗ and s′ − 2 ≡ 0 mod 3; or

(E.1) i∗ is able to collect or generate at least tH valid messages mr,s′−1
j = (E S IG j(1), E S IG j(v j), σ r,s′−1

j ) for some s′ , with 
6 ≤ s′ ≤ s∗ and s′ − 2 ≡ 1 mod 3.

Because all honest (r, s′ − 1)-messages are received by all honest users before they are done waiting in Step s′ , and 
because the Adversary receives every message no later than the honest users, without loss of generality we have

s′ = s∗and player i∗ is malicious.

Note that we did not require the value v in E.0 to be the hash of a valid block: as it will become clear in the analysis, 
v = (H(Br

�), �) in this sub-event: that is, the value agreed upon by all honest users after Step 4.
In the remaining part of the proof, we first analyze the protocol following event E , and then show that the value of 

s∗ is essentially distributed according to Lr . The latter implies that event E happens before Step m with overwhelming 
probability, given the relations of the parameters.

Consensus after event E occurs. The goal of this part is not only to show that the honest users will agree on the same block Br , 
but also to analyze the time needed for the consensus to happen after event E . Let us consider Step s∗ and distinguish four 
cases.
Case 1.0. Event E.0 happens and there exists an honest verifier i′ ∈ H S V r,s∗ who should also stop without propagating anything.

In this case, by the definition of E.0 we have s∗ − 2 ≡ 0 mod 3, thus Step s∗ is a Coin-Fixed-To-0 step. When player i′
stops, he couldn’t have triggered Ending Condition 1, because this implies there is a Coin-Fixed-To-1 step s′ < s∗ such 
that i′ has received tH valid (r, s′ − 1)-messages signing for 1, violating the definition of Step s∗ as being the first step 
where event E happens. Thus player i′ stops by triggering Ending Condition 0, and the tH signatures he has received 
must be from Step s∗ − 1, otherwise the definition of Step s∗ is again violated.
By Lemma 5.7, the tH (r, s∗ − 1)-messages received by i′ all sign 0 and the same v as the tH (r, s∗ − 1)-messages 
received/generated by i∗ . Since |M S V r,s∗−1| < tH , some honest verifiers in H S V r,s∗−1 have signed v . As an honest 
verifier i only signs his value vi from his own Step 4, we have

v = (H(Br
�), �)

as claimed earlier. Accordingly, user i′ sets Br = Br
� and sets his own C E RT r to be Head(Br

�) together with the set of 
valid (r, s∗ − 1)-messages for 0 and v that he has received.
Note that the messages in C E RT r of user i′ will reach all honest users by time βr,s∗

i′ + λ, because i′ has helped 
propagating them before his Step s∗ ends. If an honest user i has not stopped by then, i will stop with Br = Br

� also. 
We only need to show that i will not stop with a different block before receiving C E RT r for Br

� .
Indeed, since all honest verifiers only sign (H(Br

�), �) together with a bit, the only possibility is that i has seen tH

signatures of 1 from a step s′ − 1, with s′ being a Coin-Fixed-To-1 step, thus stopped with the empty block. By the 
definition of s∗ , we have s′ > s∗ . However, because there exist tH valid (r, s∗ −1)-messages signing for 0, by Lemma 5.7
there do not exist tH valid (r, s∗ − 1)-messages signing for 1. Thus no honest verifier in H S V r,s∗ will end his Step s∗
signing for 1: they either finish via Ending Condition 0 as user i′ does, or has bi set to 0 after waiting for time 2λ. 
Malicious verifiers can certainly sign 1 if the Adversary wants. However, |M S V r,s∗ | < tH/2. Accordingly, in Step s∗ + 1, 
no honest user i will finish via Ending Condition 1. Before user i is done waiting for time 2λ in Step s∗ + 1, he has 
received the C E RT r of user i′ , because

β
r,s∗
i′ + λ ≤ β

r,s∗
i + 2λ = αr,s∗+1

i + 2λ,

where the inequality is by Property (b) of Lemma 5.6. Thus the above-mentioned step s′ does not exist, and all honest 
users i finish via Ending Condition 0 (in Step s∗ or Step s∗ + 1), with Br = Br

� .
Moreover, by Lemma 5.6,

T r+1 ≤ β
r,s∗
i′ ≤ αr,1

i′ + ts∗ ≤ T r + λ + ts∗ ,

and all honest users become sure about Br in the time interval Ir+1.
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Case 1.1. Event E.1 happens and there exists an honest verifier i′ ∈ H S V r,s∗ who should also stop without propagating anything.
In this case, we have s∗ − 2 ≡ 1 mod 3 and Step s∗ is a Coin-Fixed-To-1 step. The analysis is similar to Case 1.0 and 
many details have been omitted.
As before, player i′ must have received at least tH valid (r, s∗−1)-messages of the form (E S IG j(1), E S IG j(v j), σ r,s∗−1

j ). 
Again by the definition of s∗ , there does not exist a Coin-Fixed-To-0 step s′ < s∗ , where at least tH verifiers in S V r,s′−1

have signed 0 and the same v . Thus player i′ enters Ending Condition 1 in Step s∗; sets Br = Br
ε ; and sets his own 

C E RT r to be the set of valid (r, s∗ − 1)-messages received by him and signing for 1.
Symmetric to Case 1.0, all honest users finish round r via Ending Condition 1 (in Step s∗ or Step s∗ + 1) no later than 
time βr,s∗

i′ + λ, with Br = Br
ε . Moreover,

T r+1 ≤ β
r,s∗
i′ ≤ αr,1

i′ + ts∗ ≤ T r + λ + ts∗ ,

and all honest users know Br within the time interval Ir+1. (As Br is the empty block, a user knows Br the moment 
he is sure about Br .)

Case 2.0. Event E.0 happens and there does not exist an honest verifier i′ ∈ H S V r,s∗ who should also stop without propagating 
anything.
Similar to Case 1.0, Step s∗ is a Coin-Fixed-To-0 step and the tH (r, s∗ − 1)-messages the Adversary is able to collect 
or generate are for bit 0 and v = (H(Br

�), �), where the latter is the value all honest users agreed upon by the end 
of Step 4. So player i∗ has a valid certificate C E RT r

i∗ for Br
� . However, the malicious users may not help propagating 

those messages, so we cannot conclude that the honest users will receive them in time λ. In fact, |M S V r,s∗−1| of 
those messages may be from malicious (r, s∗ − 1)-verifiers, who may not propagate their messages at all and only 
send them to the malicious verifiers in Step s∗ .
By the definition of this case and by Lemma 5.7, all honest users have finished their Step s∗ after waiting time 2λ, 
without seeing tH (r, s∗−1)-messages signing for 1. Thus all honest verifiers i ∈ H S V r,s∗ have signed and propagated 0
and v by the end of their Step s∗ . Moreover, all honest users finish their Step s∗ no later than

βr,s∗ � T r + λ + ts∗ .

From here on, we are in the easy case, as all honest users have agreed on 0 and v by the end of Step s∗ , and 
|H S V r,s∗ | > tH . They cannot enter Ending Condition 0 in Step s∗ + 1 with s′ = s∗ + 1, because the so-defined s′ is 
not a Coin-Fixed-To-0 step. Assuming the malicious users do not release C E RT r

i∗ , by Property (c) of Lemma 5.6 all 
honest users i have received all honest (r, s∗)-messages signing for 0, before they are done waiting in Step s∗ + 1. So 
all honest verifiers in H S V r,s∗+1 also sign and propagate 0 and v .19 Moreover, all honest users i finish Step s∗ + 1 no 
later than

βr,s∗+1 � βr,s∗ + λ.

Step s∗ + 2 is a Coin-Genuinely-Flipped step and is just similar. Assuming the malicious users do not release C E RT r
i∗ , 

all honest verifiers in H S V r,s∗+2 sign and propagate 0 and v before they are done waiting: that is, they do not “flip a 
coin” in this case. Moreover, all honest users finish Step s∗ + 2 no later than

βr,s∗+2 � βr,s∗+1 + λ.

Again note that they do not enter Ending Condition 0, because neither Step s∗ + 1 nor Step s∗ + 2 is a Coin-Fixed-To-0 
step.
Finally, the honest users are in Step s∗ + 3, which is another Coin-Fixed-To-0 step. All of them would have received 
at least tH valid messages for 0 and v from H S V s∗+2 by the time they are done waiting. Thus, whether or not the 
Adversary releases C E RT r

i∗ does not really matter at this point. All honest users enter Ending Condition 0 in Step 
s∗ + 3 (with s′ = s∗ + 3) and finishes round r with Br = Br

� . Moreover, they all finish no later than

βr,s∗+3 � βr,s∗+2 + λ.

If the Adversary releases C E RT r
i∗ during the above steps, he is only helping the honest users to finisher earlier. In this 

case, some honest users may have their own C E RT r for Br = Br
� containing those (r, s∗ − 1)-messages in C E RT r

i∗ , and 
the others have their own C E RT r containing (r, s∗ + 2)-messages from H S V r,s∗+2. In any case, from the moment the 
first honest user i finishes, it takes at most time λ for i’s C E RT r to reach all honest users. Therefore

T r+1 ≤ βr,s∗+3 = T r + 4λ + ts∗ ,

19 Note that Step s∗ + 1 is a Coin-Fixed-To-1 step. So if an honest verifier in H S V r,s∗+1 has not received the tH (r, s∗)-messages signing for 0 when he is 
done waiting, he would have signed 1. Thus it is important to maintain the time invariants as shown in Lemma 5.6.
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and all honest users become sure about Br within the time interval Ir+1.

Case 2.1. Event E.1 happens and there does not exist an honest verifier i′ ∈ H S V r,s∗ who should also stop without propagating 
anything.
The analysis of this case is similar to that of Cases 1.1 and 2.0, thus many details have been omitted. In particular, 
Step s∗ is a Coin-Fixed-To-1 step, C E RT r

i∗ consists of the tH desired (r, s∗ − 1)-messages for bit 1 that the Adversary 
is able to collect or generate, and there do not exist tH valid (r, s∗ − 1)-messages signing for 0.
Accordingly, all honest users agree on bit 1 by the end of Step s∗ , |H S V r,s∗ | > tH , and they all finish no later than 
βr,s∗ � T r + λ + ts∗ . Similar to Case 2.0, assuming the Adversary does not release C E RT r

i∗ , in 3 steps the protocol 
reaches Step s∗ + 3, which is another Coin-Fixed-To-1 step. In this step, all honest users enter Ending Condition 1 
with Br = Br

ε . Moreover, each of the three steps takes no more than λ time, and all honest users finish Step s∗ + 3 no 
later than βr,s∗+3 � βr,s∗ + 3λ. Thus

T r+1 ≤ βr,s∗+3 = T r + 4λ + ts∗ ,

and all honest users know Br(= Br
ε) within the time interval Ir+1.

Combining the above four cases, we have that
• T r+1 ≤ T r + λ + ts∗ in Cases 1.0 and 1.1,

• T r+1 ≤ T r + 4λ + ts∗ in Cases 2.0 and 2.1, and

• all honest users become sure about Br within the time interval Ir+1.
Since Br is either the block Br

� whose hash all honest users have agreed upon by the end of their Step 4, or the empty 
block, all payments in Br are valid.

The total time needed to reach consensus. It remains to upper-bound s∗ and thus T r+1, and we do so by considering how many 
times the Coin-Genuinely-Flipped steps are actually executed in the protocol: that is, some honest verifiers actually have 
flipped a coin.

In particular, arbitrarily fix a Coin-Genuinely-Flipped step s′ (i.e., 7 ≤ s′ ≤ m and s′ − 2 ≡ 2 mod 3), and let �′ �
arg min j∈S V r,s′−1 H(σ r,s′−1

j ). For now let us assume s′ < s∗ , because otherwise no honest verifier actually flips a coin in 
Step s′ , according to previous discussions.

By the definition of S V r,s′−1, the hash value of the (r, s′ − 1)-credential of �′ is also the smallest among all (r, s′ − 1)-
credentials of all users in P K r−k . Thus �′ is honest with the same probability ph as the leader �r . In the BA protocol in 
classical settings with n ≥ 3t + 1, �′ is honest with probability at least 2/3. As we will show in Section 5.6, In Algorand, 
even if the Adversary tries his best to predict the output of the random oracle H and tilt the probability, player �′ (as well 
as �r ) is still honest with probability at least ph = h2(1 + h − h2). Below we consider the case when �′ ∈ H S V r,s′−1.

By Property (c) of Lemma 5.6, all honest users i have received all (r, s′ − 1)-messages from H S V r,s′−1 after waiting time 
2λ in their Step s′. If player i needs to flip a coin, then by the definition of the protocol i has indeed waited 2λ time (more-
over, he wasn’t able to enter Ending Conditions, neither has he seen tH valid (r, s′ − 1)-messages for 0 or for 1). Accordingly, 
user i correctly identifies user �′ as the one with the smallest hashed credential, and sets bi = lsb(H(σ r,s′−1

�′ , r)).
Because s′ < s∗ , by the definition of s∗ , no user (honest or malicious) is able to enter Ending Conditions in Step s′ . So all 

honest users count the (r, s′ − 1)-messages propagated to them to decide their actions in Step s′ . If there exists an honest 
user i′ who has received at least tH valid (r, s′ − 1)-messages signing for the same bit b by the end of his Step s′ , then by 
Lemma 5.7, no honest user would have received at least tH valid (r, s′ − 1)-messages signing for a bit b′ 	= b.

Since lsb(H(σ r,s′−1
�′ , r)) = b with probability 1/2, all honest users reach an agreement on b with probability 1/2 by the 

end of their Step s′: either by setting bi = lsb(H(σ r,s′−1
�′ , r)) when flipping a coin, or by setting bi = b following the tH

(r, s′ − 1)-messages signing for b. Of course, if no honest user has seen tH (r, s′ − 1)-messages signing for b, then all honest 
users i have flipped a coin and agreed on bi = lsb(H(σ r,s′−1

�′ , r)) with probability 1.

Combining the probability for �′ ∈ H S V r,s′−1, we have that the honest users reach an agreement on a bit b ∈ {0, 1} with 
probability at least ph

2 . Moreover, recall from Lemma 5.8 and the hypothesis of Lemma 5.10 that all honest users i have 
agreed on v = (H(Br

�), �) by the end of their own Step 4. Thus, once an agreement on b is reached by the end of Step s′ , 
we go back to the easy case: all honest verifiers in this and future steps will only sign b and v , and there are more than 
tH of them. Accordingly, all honest users agree on Br in at most 2 steps: if b = 0 then they all enter Ending Condition 0 in 
Step s′ + 1, which is a Coin-Fixed-To-0 step; and if b = 1 then they all enter Ending Condition 1 in Step s′ + 2, which is a 
Coin-Fixed-To-1 step. Furthermore, all honest users finish their Step s′ no later than βr,s′ � T r +λ + ts′ , and each of the next 
two steps take at most λ time, therefore we have

T r+1 ≤ βr,s′ + λ = T r + 2λ + ts′

if b = 0, and

T r+1 ≤ βr,s′ + 2λ = T r + 3λ + ts′
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if b = 1. Indeed, once an agreement on b is reached by the end of Step s′ , no further Coin-Genuinely-Flipped step will be 
executed.

Accordingly, before Step s∗ , the number of times the Coin-Genuinely-Flipped steps are executed is distributed according 
to the random variable Lr . Letting Step s′ be the last Coin-Genuinely-Flipped step according to Lr , by the construction of 
the protocol we have

s′ = 4 + 3Lr .

When should the Adversary make Step s∗ (i.e., Event E) happen if he wants to delay T r+1 as much as possible? We can 
even assume the Adversary knows the realization of Lr and thus s′ in advance. There are three possibilities, as follows.

First, if s∗ > s′ then it is not useful to the Adversary, because the honest verifiers have already reached an agreement 
on b (and v) by the end of their Step s′ . To be sure, in this case s∗ would be s′ + 1 or s′ + 2, again depending on whether 
b = 0 or b = 1. However, this is just Case 1.0 or 1.1, and the resulting T r+1 here is actually better than in those previous 
cases. More precisely, because ts′+1 = ts′ + 2λ and ts′+2 = ts′ + 4λ, when b = 0, we have s∗ = s′ + 1 and

T r+1 ≤ T r + 2λ + ts′ = T r + ts′+1 = T r + ts∗ ;
while when b = 1, we have s∗ = s′ + 2 and

T r+1 ≤ T r + 3λ + ts′ < T r + ts′+2 = T r + ts∗ .

Second, if s∗ < s′ − 3—that is, s∗ is before the second-last Coin-Genuinely-Flipped step—then by the analysis of Cases 2.0 
and 2.1, Step s′ will not be executed by honest users and

T r+1 ≤ T r + 4λ + ts∗ < T r + ts′ .

That is, the Adversary is actually making the agreement on Br happen faster.
Third, if s∗ = s′ − 2 or s′ − 1—that is, the Coin-Fixed-To-0 step or the Coin-Fixed-To-1 step immediately before Step 

s′—then by the analysis of the four cases, the honest verifiers in Step s′ do not get to flip coins anymore, because they have 
either entered Ending Conditions or have seen at least tH valid (r, s′ − 1)-messages signing for the same bit b. Therefore we 
have

T r+1 ≤ T r + 4λ + ts∗ = T r + 2λ + ts∗+1 ≤ T r + 2λ + ts′ .

In sum, no matter what s∗ is, we have

T r+1 ≤ T r + 3λ + ts′ = T r + 3λ + t4+3Lr

= T r + 3λ + [2(4 + 3Lr) − 3]λ + �

= T r + (6Lr + 8)λ + �,

as we wanted to show. The worst case is when b = 1 and s∗ = s′ + 2.
Putting everything together, Lemma 5.10 holds. �

Lemma 5.4 (Soundness Lemma, restated). Assume Properties 1–3 hold for rounds 0, . . . , r − 1. When the leader �r is malicious, 
Properties 1 and 3 hold for round r.

Proof. Combining Lemmas 5.9 and 5.10, Lemma 5.4 holds. �
5.6. Security of the seed Q r and probability of an honest leader

To prove the main theorem all is left to prove is Lemma 5.5: no matter what the Adversary does, the leader of each 
round r is honest with probability at least ph . Note that we do not restrict the Adversary to specific ways of deviating from 
the protocol when trying to increase his chance of having a malicious leader. Of course one can think of several natural 
ways: he may try to predict the seed used for leader selection in a round, and then introduce new malicious users whose 
corresponding credentials have small hash values; he may try to manipulate future seeds, when the leader of some round 
happens to be malicious and thus has some control about the next seed; etc. Our protocol guarantees that, under these and 
all possible ways of deviating not mentioned here, the probability of a malicious leader is at most 1 − ph .

To be more precise, recall that the verifiers in round r are taken from P K r−k and are chosen according to the quan-
tity Q r−1. The reason for introducing the look-back parameter k is to make sure that, back at (the beginning of) round 
r − k, when the Adversary is able to add new malicious users to P K r−k , he cannot predict the quantity Q r−1 except with 
negligible probability. Note that the hash function is a random oracle and Q r−1 is one of its inputs when selecting verifiers 
for round r. Thus, when the Adversary fails in predicting Q r−1, no matter how malicious users are added to P K r−k , from 
the Adversary’s point of view each one of them is still selected to be a verifier in a step of round r with the required 
probability pv (or pl for Step 1). More precisely, we have the following lemma.
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Lemma 5.11. With k = O (log1/2 F ), for each round r, with overwhelming probability the Adversary did not query Q r−1 to the random 
oracle back at round r − k.

Proof. We proceed by induction. Assume that for each round γ < r, the Adversary did not query Q γ −1 to the random oracle 
back at round γ − k.20 Consider the following mental game played by the Adversary at round r − k, trying to predict Q r−1.

In Step 1 of each round γ = r − k, . . . , r − 1, given a specific Q γ −1 not queried to the random oracle, by ordering the 
players i ∈ P K γ −k according to the hash values H(S IGi(γ , 1, Q γ −1)) increasingly, we obtain a random permutation over 
P K γ −k . By definition, the leader �γ is the first user in the permutation and is honest with probability h. Moreover, when 
P K γ −k is large enough, for any integer x ≥ 1, the probability that the first x users in the permutation are all malicious but 
the (x + 1)st is honest is (1 − h)xh. A more precise calculation will give the exact combinatorial probabilities, but will not 
change the final result.

If �γ is honest, then Q γ = H(S IG�γ (Q γ −1), γ ). As the Adversary cannot forge the signature of �γ , Q γ is distributed 
uniformly at random from the Adversary’s point of view and, except with exponentially small probability,21 was not queried 
to H at round r − k. Since each Q γ +1, Q γ +2, . . . , Q r−1 respectively is the output of H with Q γ , Q γ +1, . . . , Q r−2 as one of 
the inputs, they all look random to the Adversary and the Adversary could not have queried Q r−1 to H at round r − k.

Accordingly, the only case where the Adversary can predict Q r−1 with good probability at round r − k is when all the 
leaders �r−k, . . . , �r−1 are malicious. Again consider a round γ ∈ {r − k . . . , r − 1} and the random permutation over P K γ −k

induced by sorting the corresponding hash values. If for some x ≥ 2, the first x −1 users in the permutation are all malicious 
and the x-th user is honest, then the Adversary has x possible choices for Q γ : either of the form H(S IGi(Q γ −1), γ ), where 
i is one of the first x − 1 malicious users, by making player i the actually leader of round γ ; or H(Q γ −1, γ ), by forcing 
Bγ = Bγ

ε . Otherwise, the leader of round γ will be the first honest user in the permutation and Q r−1 becomes unpredictable 
to the Adversary.

Which of the above x options of Q γ should the Adversary pursue? To help the Adversary answer this question, in 
the mental game we make him more powerful than he actually is, as follows. First of all, in reality, the Adversary cannot 
compute the hash of a honest user’s signature, thus cannot decide, for each Q γ , the number x(Q γ ) of malicious users at 
the beginning of the random permutation in round γ + 1 induced by Q γ . In the mental game, we give him the numbers 
x(Q γ ) for free. Second of all, in reality, having the first x users in the permutation all being malicious does not necessarily 
mean they can all be made into the leader, because the hash values of their signatures must also be less than pl . We have 
ignored this constraint in the mental game, giving the Adversary even more advantages.

Without loss of generality below we focus on the quantity Q̂ γ , which produces the longest sequence of malicious users 
at the beginning of the random permutation in round γ + 1. Indeed, given a specific Q γ , the protocol does not depend on 
Q γ −1 anymore and the Adversary can solely focus on the new permutation in round γ +1, which has the same distribution 
for the number of malicious users at the beginning. Accordingly, in each round γ , the above mentioned Q̂ γ gives him the 
largest number of options for Q γ +1 and maximizes the probability that the consecutive leaders are all malicious.

Thus winning probability of the Adversary in the mental game follows a Markov Chain from round r − k to round r − 1, 
with the state space being {0} ∪ {x : x ≥ 2}. State 0 represents the fact that the first user in the random permutation in the 
current round γ is honest, thus the Adversary fails the game for predicting Q r−1; and each state x ≥ 2 represents the fact 
that the first x − 1 users in the permutation are malicious and the x-th is honest, thus the Adversary has x options for Q γ . 
The transition probabilities P (x, y) are as follows.

• P (0, 0) = 1 and P (0, y) = 0 for any y ≥ 2. That is, the Adversary fails the game once the first user in the permutation 
becomes honest.

• P (x, 0) = hx for any x ≥ 2. That is, with probability hx , all the x random permutations have their first users being 
honest, thus the Adversary fails the game in the next round.

• For any x ≥ 2 and y ≥ 2, P (x, y) is the probability that, among the x random permutations induced by the x options 
of Q γ , the longest sequence of malicious users at the beginning of some of them is y − 1, thus the Adversary has y
options for Q γ +1 in the next round. That is,

P (x, y) =
⎛
⎝y−1∑

i=0

(1 − h)ih

⎞
⎠

x

−
⎛
⎝y−2∑

i=0

(1 − h)ih

⎞
⎠

x

= (1 − (1 − h)y)x − (1 − (1 − h)y−1)x.

Note that state 0 is the unique absorbing state in the transition matrix P , and every other state x has a positive probability 
of going to 0. We are interested in upper-bounding the number k of rounds needed for the Markov Chain to converge 
to 0 with overwhelming probability: that is, no matter which state the chain starts at, with overwhelming probability the 
Adversary loses the game and fails to predict Q r−1 at round r − k.

20 As k is a small integer, without loss of generality one can assume that the first k rounds of the protocol are run under a safe environment and the 
inductive hypothesis holds for those rounds.
21 That is, exponential in the length of the output of H . Note that this probability is way smaller than F .
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Consider the transition matrix P (2) � P · P after two rounds. It is easy to see that P (2)(0, 0) = 1 and P (2)(0, x) = 0 for 
any x ≥ 2. For any x ≥ 2 and y ≥ 2, as P (0, y) = 0, we have

P (2)(x, y) = P (x,0)P (0, y) +
∑
z≥2

P (x, z)P (z, y) =
∑
z≥2

P (x, z)P (z, y).

Letting h̄ � 1 − h, we have

P (x, y) = (1 − h̄ y)x − (1 − h̄ y−1)x

and

P (2)(x, y) =
∑
z≥2

[(1 − h̄z)x − (1 − h̄z−1)x][(1 − h̄ y)z − (1 − h̄ y−1)z].

Below we compute the limit of P (2)(x,y)
P (x,y)

as h goes to 1—that is, h̄ goes to 0. Note that h̄ ∈ [0, 1) and the lowest order of h̄ in 
P (x, y) is h̄ y−1, with coefficient x. Accordingly,

lim
h→1

P (2)(x, y)

P (x, y)
= lim

h̄→0

P (2)(x, y)

P (x, y)
= lim

h̄→0

P (2)(x, y)

xh̄y−1 + O (h̄ y)

= lim
h̄→0

∑
z≥2[xh̄z−1 + O (h̄z)][zh̄y−1 + O (h̄ y)]

xh̄y−1 + O (h̄ y)
= lim

h̄→0

2xh̄y + O (h̄ y+1)

xh̄y−1 + O (h̄ y)

= lim
h̄→0

2xh̄y

xh̄y−1
= lim

h̄→0
2h̄ = 0.

When h is sufficiently close to 1,22 we have

P (2)(x, y)

P (x, y)
≤ 1

2

for any x ≥ 2 and y ≥ 2. By induction, for any k > 2, P (k) � Pk is such that

• P (k)(0, 0) = 1, P (k)(0, x) = 0 for any x ≥ 2, and
• for any x ≥ 2 and y ≥ 2,

P (k)(x, y) = P (k−1)(x,0)P (0, y) +
∑
z≥2

P (k−1)(x, z)P (z, y)

=
∑
z≥2

P (k−1)(x, z)P (z, y)

≤
∑
z≥2

P (x, z)

2k−2
· P (z, y) = P (2)(x, y)

2k−2
≤ P (x, y)

2k−1
.

As P (x, y) ≤ 1, after k ≥ 1 + log1/2 F rounds, the transition probability P (k)(x, y) into any state y ≥ 2 is negligible, starting 
with any state x ≥ 2. Although there are many such states y, it is easy to see that

lim
y→+∞

P (x, y)

P (x, y + 1)
= lim

y→+∞
(1 − h̄ y)x − (1 − h̄ y−1)x

(1 − h̄ y+1)x − (1 − h̄ y)x
= lim

y→+∞
h̄ y−1 − h̄ y

h̄y − h̄ y+1

= 1

h̄
= 1

1 − h
.

Therefore each row x of the transition matrix P decreases as a geometric sequence with rate 1
1−h > 2 when y is large 

enough, and the same holds for P (k) . Accordingly, when k is large enough but still on the order of log1/2 F , 
∑

y≥2 P (k)(x, y) <
F for any x ≥ 2. That is, with overwhelming probability the Adversary loses the game and fails to predict Q r−1 at round 
r − k. For h ∈ (2/3, 1], a more complex analysis shows that there exists a constant C slightly larger than 1/2, such that it 
suffices to take k = O (logC F ). Thus Lemma 5.11 holds. �
22 For example, h = 80% as suggested by the specific choices of parameters.
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Lemma 5.5 (restated). Given Properties 1–3 for each round before r, ph = h2(1 + h − h2) for Lr , and the leader �r is honest with 
probability at least ph.

Proof. Following Lemma 5.11, the Adversary cannot predict Q r−1 back at round r − k except with negligible probability. 
Note that this does not mean the probability of an honest leader is h for each round. Indeed, given Q r−1, depending on 
how many malicious users are at the beginning of the random permutation of P K r−k induced by Q r−1, the Adversary may 
have more than one options for Q r and thus can increase the probability of a malicious leader in round r + 1—again we are 
giving him some unrealistic advantages as in Lemma 5.11, so as to simplify the analysis.

However, for each Q r−1 that was not queried to H by the Adversary back at round r − k, for any x ≥ 1, with probability 
(1 − h)x−1h the first honest user occurs at position x in the resulting random permutation of P K r−k . When x = 1, the 
probability of an honest leader in round r + 1 is indeed h; while when x = 2, the Adversary has two options for Q r and the 
resulting probability is h2—the probability that both permutations start with an honest user. Only by considering these two 
cases, we have that the probability of an honest leader in round r + 1 is at least ph = h · h + (1 − h)h · h2 = h2(1 + h − h2)

as desired.
Note that the above probability only considers the randomness in the protocol from round r − k to round r. When all 

the randomness from round 0 to round r is taken into consideration, Q r−1 is even less predictable to the Adversary and 
the probability of an honest leader in round r + 1 is at least ph . Replacing r + 1 with r and shifting everything back by one 
round, the leader �r is honest with probability at least ph .

Similarly, in each Coin-Genuinely-Flipped step s, the “leader” of that step—that is, the verifier in S V r,s whose credential 
has the smallest hash value—is honest with probability at least ph , as defined in the random variable Lr . �

Note that because ph < h, the Adversary may be able to make the fraction of “malicious blocks” larger than the fraction 
of users he controls. For example, when h = 0.9, ph = 0.8829.23

6. Algorand with Honest Majority of Money

We now, finally, show how to replace the Honest Majority of Users assumption with the much more meaningful Honest 
Majority of Money assumption. Following the HMM assumption, h ∈ (2/3, 1] is now the fraction of total money owned by 
honest users in each P K r . The basic idea is (in a proof-of-stake flavor) “to select a user i ∈ P K r−k to belong to S V r,s with a 
weight proportional to the amount of money owned by i.”

6.1. The simplest implementation

There are many ways to implement the above idea. The conceptually simplest way would be to have each public key “flip 
a coin” for each unit of money it owns. More specifically, let n and nl respectively be the expected number of money units 
selected as verifiers and as potential leaders. Let ar

i be the amount of money owned by key i in round r and Ar = ∑
i∈P K r ar

i

the total amount of money in round r. Then pv � n
Ar−k , and each pair (i, v) with i ∈ P K r−k and v ∈ {1, 2, . . . , ar−k

i } is in 
S V r,s if and only if .H(S IGi(r, s, v, Q r−1)) ≤ pv . Potential leaders are selected in the same way with respect to pl � nl

Ar−k . 
Each key i may have more than one pairs (i, v) in P Lr or S V r,s , and each pair (i, v) has its own ephemeral key pair 
(pkr,s

i,v , skr,s
i,v) for a step s of round r. The parameters n, tH and nl are chosen such that the conditions about P Lr , H S V r,s and 

M S V r,s required in Section 5 hold with overwhelming probability. With this implementation, each unit of money is treated 
as an individual user, thus Theorem 1 holds under the HMM assumption.

6.2. An efficient implementation

The above simple implementation would “force a rich participant in the system to sign many things in each step”. 
Instead, we can achieve the same result while only requiring one signature from each key i in each step s.

Verifier selection. The idea is that we only care about the final distribution for the number of copies a key i has in S V r,s , 
not the exact coin flips for each unit of money owned by i. Fixing a key i ∈ P K r−k , we let a = ar−k

i to simplify the notation. 
For any integer x ∈ {0, 1, . . . , a}, the probability that i has x copies in S V r,s is pi,x = (a

x

)
px

v(1 − pv)a−x . Since 
∑a

x=0 pi,x = 1, 
we can partition the interval [0, 1] into a + 1 consecutive sub-intervals, where the x-th interval Ix has length pi,x . That is, 
Ix = (∑

x′<x pi,x′ ,
∑

x′≤x pi,x′
]
, with I0 also including 0.

Let y � .H(S IGi(r, s, Q r−1)). When Q r−1 is randomly selected, y is uniformly distributed over [0, 1]. Let x ∈ {0, 1, . . . , a}
be the unique value with y ∈ Ix . If x = 0 then i is not an (r, s)-verifier. Otherwise, i is considered to have x copies in S V r,s , 

23 In a proof-of-work protocol where proposing a block is expensive and block proposers must be rewarded, the difference between 0.9 and 0.8829
implies that an Adversary capable of controlling 10% of the computation power is able to collect 11.7% of the reward. In Algorand, however, proposing a 
block does not require solving a complex cryptographic riddle. Thus the difference between 0.9 and 0.8829 only affects liveness. That is, a good block is 
proposed 88.29% of the time rather than 90% of the time.
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and the credential of i for proving this fact is σ r,s
i = S IGi(r, s, Q r−1). Indeed, any user knowing σ r,s

i and a is able to 
compute y and find the corresponding x.

Note that the number of copies of i in S V r,s according to this approach has exactly the same distribution as when i
has flipped a coin for each unit of money he owns.24 Thus all the required conditions about H S V r,s and M S V r,s hold with 
overwhelming probability. The only change in the protocol is that, when a user j receives an (r, s)-message of i (which 
contains i’s credential proving x > 0), j counts it as x messages.

Leader selection. To decide whether or not a key i is the leader of round r, the only thing we need to know is the smallest 
hash value

xi � min
v∈{1,...,a} H(S IGi(r,1, v, Q r−1)).

Key i is in P Lr (more precisely, has at least one copy in P Lr ) if and only if .xi ≤ pl . Moreover, no matter how many copies 
each key i has in P Lr , the leader is �r = mini∈P Lr xi = mini∈P K r−k xi .

Let {0, 1, . . . , U } be the image set of the hash function H . For each u ≤ U , the probability that xi = u is pi,u = ( U−u+1
U+1 )a −

( U−u
U+1 )a . Since 

∑U
u=0 pi,u = 1, again we can partition the interval [0, 1] into U + 1 consecutive sub-intervals, with the u-th 

interval Iu �
(∑

u′<u pi,u,
∑

u′≤u pi,u
]

and I0 also containing 0.

Let y � .H(S IGi(r, 1, Q r−1)) and u be the unique value with y ∈ Iu . Then, i is considered to have xi = u, i ∈ P Lr if and 
only if xi ≤ pl , and his credential for this fact is σ r,1

i = S IGi(r, 1, Q r−1). Indeed, the so-defined xi has exactly the same 
distribution as when i has computed his signature for each unit of money he owns and then set xi to be the smallest hash 
of them.

Accordingly, the same choice of nl still guarantees that P Lr 	= ∅ with overwhelming probability. The corresponding leader 
�r has the same distribution as before, thus is honest with probability h when Q r−1 is randomly selected. Moreover, any 
user j knowing σ r,1

i , a and H is able to compute xi . In Step 2 of the protocol, user j chooses his own leader �r
j to be the 

key with the smallest xi among all valid (r, 1)-credentials received by him.

Leaders for coin flips. Although the credential σ r,s
i for s > 1 has the same form S IGi(r, s, Q r−1) as before, its meaning has 

changed. Thus in a Coin-Genuinely-Flipped step s, a key i who needs to flip a coin should no longer consider the smallest 
hashed (r, s − 1)-credential received by him: this no longer guarantees that the selected key � is honest with probability h.

Instead, at the end of each Coin-Fixed-To-1 step s − 1, another set of “potential leaders for coin flips”, P Lr,s−1, is selected 
similar to P Lr , except that each key i ∈ P K r−k computes yr,s−1 � .H(S IGi(r, s − 1, “coin”, Q r−1)). The corresponding “coin-
flip credential” for belonging to P Lr,s−1 is σ r,s−1,coin

i = S IGi(r, s − 1, “coin”, Q r−1), which is independent from σ r,s−1
i . Each 

key i ∈ P Lr,s−1 propagates σ r,s−1,coin
i at the end of his own Step s − 1, together with other (r, s − 1)-messages he should 

propagate if he is also in S V r,s−1.
Note that, in expectation, no more than nl coin-flip credentials are propagated at the end of a Coin-Fixed-To-1 step. The 

“coin-flip leader” �r,s−1 is defined to be the key with the smallest xi in P Lr,s−1, and �r,s−1 is honest with probability h
when Q r−1 is randomly selected.

When a key i needs to flip a coin in Step s, he finds the key � ∈ P Lr,s−1 whose corresponding x� is the smallest among 
those received by him, and sets bi � lsb(H(σ r,s−1,coin

� , r)).

Business as usual. Having defined how the verifiers and the potential leaders are selected and how their credentials are 
computed in each step of a round r, the execution of a round is similar to that defined in Section 4. Following almost the 
same analysis as in Section 5.6, the leader �r is honest with probability at least ph as before, and the random variable Lr is 
also distributed according to ph . With this implementation, Theorem 1 holds under the HMM assumption.

7. Worst case vs. optimistic case

The time it takes to generate a block as stated in Theorem 1 is the worst-case: in particular, it holds when the malicious 
minority is exactly 1 − h. In an optimistic environment, the malicious minority may be much less. For example, to be on 
the safe side the system may estimate that 20% of the money is controlled by malicious users, while in reality this number 
may be just 2%.

To speed up the protocol in good environments, while still maintain its security and worst-case performance, we add 
a new rule as follows. Given the original parameters h, n and tH , let t′

H > tH be such that |M S V r,s| < t′
H − tH with over-

whelming probability. In any step s ≥ 3, if a user i has received at least t′
H valid (r, 2)-messages signing for the same 

v = (H(Br
�), �), then i finishes his own round r immediately, with Br = Br

� and C E RT r containing those (r, 2)-messages.
Indeed, since |M S V r,2| < t′

H −tH , the existence of at least t′
H (r, 2)-messages for v implies that at least tH honest verifiers 

in H S V r,2 have signed for v . Thus we are in the same scenario as in the completeness lemma, and the original protocol is 

24 We thank Georgios Vlachos for suggesting this.
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guaranteed to finish with Br = Br
� in Step 5. In this case, the new rule makes the shortcut and lets the honest users finish 

immediately in Step 3, without causing any ambiguity about what Br should be. The resulting running time of round r in 
this case is at most 2λ + � when P AY r 	= ∅, and is at most 4λ otherwise.

Note that such a short running time is guaranteed to happen if the leader �r is honest and |H S V r,2| ≥ t′
H , no matter 

what the Adversary does. Moreover, recall that �r is simply the first user in the random permutation defined by Q r−1 (via 
signatures and hashes). Therefore the probability of having an honest leader in round r is determined by the real honest 
majority, denoted by h′ , not the lower-bound h used by the system. In good environments where h′ is close to 1, with high 
probability �r is honest and |H S V r,2| ≥ t′

H . Indeed, following the example parameters in Section 5 with h = 80%, it suffices 
to take t′

H ≈ 3, 800. If the real honest majority is h′ = 98%, then �r is honest with probability ph′ ≈ 97.9% and |H S V r,2| ≥ t′
H

with probability > 94%. Thus the protocol proceeds very fast, with almost all blocks finishing within 3 steps and generated 
by honest leaders.

8. Implementing ephemeral keys in Algorand

As discussed, a verifier i ∈ S V r,s digitally signs his message of step s in round r relative to an ephemeral public key pkr,s
i , 

using an ephemeral secrete key skr,s
i that he promptly destroys after using. We thus need an efficient method to ensure that 

every user can verify that pkr,s
i is indeed the key to use to verify i’s signature of mr,s

i . We do so by a (to the best of our 
knowledge) new use of identity-based signature schemes [44].

At a high level, in such a scheme, a central authority A generates a public master key, P M K , and a corresponding secret 
master key, S M K . Given the identity, U , of a player U , A computes via S M K a secret signing key skU relative to the public 
key U , and privately gives skU to U . Indeed, in an identity-based signature scheme, the public key of a user U is U itself. 
This way, if A destroys S M K after computing the secret keys for the users he chose, and does not keep any computed 
secret key skU , then U is the only one who can digitally sign messages relative to the public key U . Anyone who knows 
“U ’s name” automatically knows U ’s public key, and thus can verify U ’s signatures (possibly using also the public master 
key P M K ).

In our application, the authority A is user i himself, and the set of all possible users U consists of the user-round-step 
triples (i, r, s) in, say, S = {i} × {r′ + 1, . . . , r′ + 106} × {1, 2, . . . , m}. Here r′ is a given round from which user i prepares his 
ephemeral keys for, say, the next 106 rounds. Recall that m is the upper-bound for the number of steps within a round. This 
way, pkr,s

i � (i, r, s) and every user seeing i’s signature S IG pkr,s
i

(v) for some value v can immediately verify it, for the first 
million rounds r following r′ .

In other words, user i first generates P M K and S M K , and then uses S M K to privately produce and store the secret keys 
skr,s

i for each triple (i, r, s) ∈ S . Having done so, he destroys S M K and publicizes that P M K is his master public key for any 
round r ∈ {r′ + 1, . . . , r′ + 106}. If i determines that he is not in S V r,s , then he may leave skr,s

i alone (as the protocol does 
not require that he authenticates any message in Step s of round r). Else, i first uses skr,s

i to digitally sign his message in 
Step s of round r, and then destroys skr,s

i .
Note that user i can publicize his first public master key P M K when he first enters the system. That is, the same 

payment transaction P that brings i into the system (at round r′ or at a round close to r′) may also specify, as auxiliary 
information and at i’s request, that i’s public master key for any round r ∈ {r′ + 1, . . . , r′ + 106} is P M K . In particular, P
may include a triple of the form (P M K , r′, 106).

Also note that, assuming a round takes a minute, the stash of ephemeral keys so produced will last i for almost two 
years. At the same time, these ephemeral secret keys will not take i too long to produce. Using an elliptic-curve based 
system with 32-Byte keys, each secret key is computed in a few microseconds. If m = 180 as in our example choices of 
parameters, then all 180 M secret keys can be computed in less than one hour.

When the current round is getting close to r′ + 106, to handle the next million rounds, i generates a new master-key 
pair (P M K ′, S M K ′) and computes the next stash of ephemeral secret keys using S M K ′ . Then he publicizes P M K ′ by—for 
example—having S IGi(P M K ′, r′ + 106, 106) enter a new block, either as a separate “transaction” or as auxiliary information 
in a payment transaction. By so doing, i informs everyone that he/she should use P M K ′ when verifying i’s ephemeral 
signatures in the next million rounds. And so on.

Following this basic approach, other ways for implementing ephemeral keys without using identity-based signatures are 
certainly possible. For instance, via Merkle trees [31].25

9. Handling offline honest users

An honest user follows all his prescribed instructions, which include being online and running the protocol: that is, 
continual participation. This is not a major burden in Algorand, since the computation and bandwidth required from an 

25 In this method, user i generates a public-secret key pair (pkr,s
i , skr,s

i ) for each round-step pair (r, s) in, say, {r′ + 1, . . . , r′ + 106} × {1, . . . , m}. He orders 
the public keys in a canonical way, stores the jth public key in the jth leaf of a Merkle tree, and computes the root value Ri , which he publicizes. When 
he wants to sign a message relative to key pkr,s

i , i not only provides the actual signature, but also the authenticating path for pkr,s
i relative to Ri . Note that 

this authenticating path also proves pkr,s
i is stored in the jth leaf. The rest of the details can be easily filled.
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honest user are quite modest. However, Algorand can be easily modified so as to work in alternative models where honest 
users are allowed to go offline in great numbers.

Before discussing such a model, let us first recall from Section 7 that if the percentage of honest users were 95%, Algorand 
could still be run with all parameters set according to, say, h = 80%. In this case, Algorand would continue to work even if 
as many as half of the honest users chose to go offline (which is a major case of “absenteeism”). Indeed, at least 80% of the 
online users would still be honest. One way for handling this case is to essentially “sense” the number of active users and 
adjust the parameters.

From continual participation to lazy honesty. Note that the Continual Participation requirement ensures a crucial property: 
namely, the underlying BA protocol has a proper honest majority. We now explain how lazy honesty provides an alternative 
and attractive way to satisfy this property.

More specifically, a user i is lazy-but-honest if (1) he follows all his prescribed instructions when he is asked to participate 
to the protocol, and (2) he is asked to participate to the protocol only rarely—e.g., once a week—with suitable advance 
notice.26

To allow Algorand to work with such users, it suffices to “choose the verifiers of the current round from users already 
in the system in a much earlier round.” Indeed, recall that the verifiers for a round r are chosen from users in round r − k, 
and the selections are made based on the quantity Q r−1. Assuming a round takes roughly 5 minutes on average, a week 
has roughly 2,000 rounds. Assume at some point of time a user i wishes to plan his time and know whether he is going to 
be a verifier in the coming week. To facilitate i’s decision, the protocol now chooses the verifiers for a round r from users 
in round r − k − 2, 000, and the selections are based on Q r−2,001.

Note that at a round r′ , user i already knows the values Q r′−2,000, . . . , Q r′−1, as they are part of the blockchain. Moreover, 
for each r ∈ {r′ + 1, . . . , r′ + 2, 000}, i is a verifier in a step s of round r if and only if

.H
(

S IGi

(
r, s, Q r−2,001

))
≤ pv .

Thus, at round r′ user i is able to check whether he is going to be called to act as a verifier (or a potential leader) in 
the next 2,000 rounds. If computing a digital signature takes a millisecond, then the entire computation takes him about 1 
minute. If he is not selected as a verifier in any of these rounds, then he can go offline with an “honest conscience”: had 
he continuously participated, he would have essentially taken 0 steps in the next 2,000 rounds anyway. If instead, he is 
selected to be a verifier in one of these rounds, then he readies himself (e.g., by obtaining all the information necessary) to 
act as an honest verifier at the proper round.

By so acting, a lazy-but-honest user i only misses participating to the propagation of messages; but message propagation 
is typically robust. Moreover, the payers and the payees of recently propagated payments are expected to be online to watch 
what happens to their payments, and will participate to message propagation if they are honest.

10. Forks

Having reduced the probability of forks to 10−18, it is practically unnecessary to handle them in the remote chance that 
they occur. Algorand, however, can also employ various fork resolution procedures, with or without proof of work. We shall 
discuss alternative approaches for fork resolution in a forthcoming paper.
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