EFFICIENT SMART CONTRACTS AT SCALE:
Algorand’s Stateful TEAL Contracts

By Silvio Micali

Smart contracts are one of the most beautiful and powerful gifts of the blockchain to the world.
But they are also technically very challenging. Traditional smart contracts are solely
implemented at layer 2 and are slow, expensive, and fragile. By contrast, Algorand’s smart
contracts are very much non-traditional, efficient, and secure, and are implemented both at layer
1 and at layer 2.

Algorand’s layer-1 smart contracts are executed at the very consensus layer, the most secure
layer in any blockchain, without slowing down block production in the least. These smart
contracts are thus as efficient and secure as ordinary payments. They are also called TEAL
contracts, because they are written in a special language: TEAL, short for Transaction
Execution Approval Language.

Algorand’s layer-1 smart-contract platform has two components, namely:

1. Stateless TEAL contracts.
This technology was released last November (2019) and has been discussed in my

earlier blog.

2. Stateful TEAL contracts.
This technology is being released this August (2020) and is the subject of this blog.

The next and final chapter in Algorand’s smart-contract platform will consist of its Smart?
Contracts. As discussed in my latest blog, such contract operates at level 2, but in
fundamentally novel ways. This technology will be deployed next year.

Before describing Stateful TEAL, it is best to quickly recall its powerful “predecessor.”
0. Stateless TEAL

Stateless TEAL contracts are very efficient logic programs designed to either approve or deny a
transaction at the time it is submitted. They consist of an at most 1KB-long sequence of some
30 basic instructions, such as COMPARE (X,Y), where X and Y are integers, and VERIFY(X),
where X is a digital signature. They are stateless, because they only access information
available within the transaction itself, which is one of the reasons they are so efficient.

Algorand’

https://www.algorand.com/resources/blog/algorand-smart-contracts
https://www.algorand.com/resources/blog/algorand-smart-contracts
https://www.algorand.com/resources/blog/algorand-smart-contract-architecture

Stateless TEAL technology is very powerful, as it allows one to configure highly tailored
restrictions on transactions and groups of transactions so as to remove high-cost intermediaries
and to add unprecedented levels of transparency to often opaque economic activities. For
example, with Stateless TEAL, you can post an item for sale along with a possible list of what
you may accept in return. Having done this, no further interaction from you is needed: you might
as well leave for vacation! The contract will ensure that your item will be automatically sold to
the first user who accepts your offer. If your conditions are not fully met, no trade will happen,
and your item will remain unsold. At the same time, the other party is protected too. Indeed, the
trade is “atomic.” Whoever the second party might be, both of you are guaranteed to get what
you respectively want. If not, the status quo is maintained.

Additional examples of stateless TEAL contracts include collateralized loans, escrow systems,
sets of complex and interdependent payments, and much more.

1. Stateful TEAL

Stateless TEAL contracts are great. But: what if you need a contract to act conditioned on
information that is not a part of incoming transactions? For these applications, we have
developed stateful TEAL programs.

As the name suggests, such programs maintain state and are written in TEAL. In fact, TEAL has
been enriched with a few new instructions, not only to properly handle state information, but
also to handle Merkle trees and other valuable functionalities.

THE CHALLENGE

Stateful Teal contracts must respect a fundamental Algorand tenet: ensuring that each block
continues to be generated in a few seconds, with immediate transaction finality.

Guaranteeing such a performance is not easy, particularly if user costs must be kept low.
A FIRST, NAIVE APPROACH

Storing state information directly on the blockchain is certainly the easiest approach, but hardly
the most efficient one. In this approach, the state information of an application that runs for a
long time would be dispersed over widely separated blocks, making it be impossible, at layer 1,
to retrieve it without significantly slowing down block production. Furthermore, data, once written
on the blockchain, cannot be changed, but efficiently updating state information requires over-
writing. Simulating such over-writing by appending newer data will make this first approach
enormously inefficient.

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com

A SECOND, LOW-CONCURRENCY APPROACH

In another approach, an application may store its state information off-chain, while keeping only
a commitment to (for example the Merkle hash of) this information on the chain itself, in order to
guarantee its integrity. In this approach, changing a piece of data from, say, x to y, requires
presenting a proof of the value of x, relative to its previous commitment, and generating and
storing a new commitment that reflects the replacement of x with y.

This way of proceeding, however, does not allow for much concurrency. Consider two
transactions each of whose execution is requested at a given point in time. The first transaction
requires changing a piece of the state from x to y, thus presenting a proof of the value of x
relative to the latest commitment of the state information. The second requires changing another
piece of state from u to v. Each of these transactions may be valid, not only individually, but
also if it executed after the other has been executed. In this second approach, however,
whichever of the two transactions is executed first will delay the execution of the other! Assume
that the commitment of current state of the application is €, and that the first transaction is
executed first. Then, after presenting a proof, relative to C, of the correctness of the value x, the
first transaction (a) off chain, changes x with y, and (b) on chain, changes the commitment to
the application’s state from C to C'. Thus, once the second transaction arrives, it will not be
executed because its proof of the correctness of the value u is no longer valid. Indeed, such a
proof remains relative to the previous commitment C, rather than being relative to the new |
commitment C'!

If scalability were not a goal, this second approach might, with additional effort, be extended to
cope with a few transactions per second. But it would fail to handle hundreds of transactions per
second. The second approach is unacceptable because it cannot handle concurrency at scale.
We need a different solution.

ALGORAND'S APPROACH

Algorand solves these problems by storing the application’s state in the accounts of the relevant
parties: namely, the creator of the application and the users who have chosen to participate.

A first reason for choosing this approach is that, in Algorand, accounts are extremely efficiently
generated by their owners, efficiently and transparently consulted by everyone, and altogether
cheap to operate. So much so that Algorand does not impose any fee to maintain an account.
The only requirement is to keep a very modest balance of 0.1 Algos. If an account owner
chooses to create an application, then an additional balance of 0.1 Algos is required, enabling
the account to maintain up to 64 pairs (x, y), where both x and y are 64-byte long strings. Each
additional pair increases the required balance by 0.05 Algos.’

1 Actually, the balance increases may be of just 0.035 Algos, if the value stored is an integer rather than
an arbitrary 64-byte string.

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
https://www.algorand.com/

Typically, x specifies a public key and y an amount of a given fungible token (or a specific non-
fungible token) controlled by key x. Nevertheless, no restrictions are imposed on either x or y.
Thus, in a stateful TEAL application, (x,v) is a varniable-value pair: that is, x is the name of a
variable, and y its current content. These variables and contents store the application’s state
information. Specifically, the account of the application creator stores the application’s global
state, and the accounts of all users who have opted in collectively store the application’s local
state.

Note that anyone can access the information stored in any given account. However, only the

application can modify its own global and local states. This is no different from the way that a

user's account stores the number of Algos she owns, but the user herself cannot modify (e.g.,
increase) the number of her own Algos!

CONCURRENCY

Also note that the Algorand approach allows for a great amount of concurrency. Indeed, two
valid transactions are free to modify the application’s internal state legitimately without one
blocking the other. Such concurrency is indeed a main advantage of sharding the application
state information among the accounts of all its users, an advantage that becomes increasingly
significant as the number of users and transactions grows.

RESOURCES, EFFICIENCIES, AND COSTS

A stateful TEAL application does not have an arbitrarily large state. As mentioned, the
application creator’'s account can store up to 64 variable-value pairs of global state. And each
opting-in account can store up to 16 variable-value pairs of local state. These storage limitations
are necessary to guarantee that Algorand’s stateful TEAL contracts do not slow down block
generation. In fact, this approach allows Algorand to handle, at layer 1!, one thousand stateful
TEAL transactions per second, no matter how large the number of opting-in users may be.

Although the amount of local state per account may appear small, note that the total local state
information grows linearly with the number of opting-in users. Thus, it will be big if there are
many users, making it plausible that the amount of available state information may be adequate
in many applications. In any case, once more, the proof is in the pudding: as we shall see in
section 4, stateful TEAL can successfully handle many crucial applications.

As for costs, as already mentioned, an opting-in account does not pay any fee to store its
portion of local state. Rather, it is required to keep an additional balance of 0.05 Algos for each
variable-value pair of local state it is required to keep. Such additional balance requirement is
immediately lifted the moment the account opts out of the application, by posting a proper
transaction on the chain.

In sum, stateful TEAL is a major addition to Algorand’s layer-1 technology and enjoys the scale
and the great economic efficiency that Algorand users are accustomed to.

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
https://www.algorand.com/

2. Examples of Stateful TEAL Applications

Stateful TEAL contracts can efficiently and securely handle all kinds of applications. Below are
just a few ones.

Auctions
Stateful TEAL enables a variety of auctions. Let us consider, for example, a Dutch auction.

Suppose | have N new tokens to sell via a Dutch auction. Then, | create a new stateful TEAL
application, with three global state variables:

(a) the available number of tokens, N,

(b) the current price P, initialized to some starting price, and

(c) the total committed money, CM, initially set to 0.
At periodic intervals (e.g., every 50 blocks), my application lowers the current price P by a given
amount (e.g. 0.1 Algos), until some reserve price is reached or the entire supply of tokens can
be sold based on the current bids.

Every opting-in user is able to submit a bid at the current price, because P is part of the global
state and is therefore public. Specifically, a user’s call to my application (1) specifies a bid
consisting of an amount of Algos, 4, and a maximum price, B, and (2) transfers A Algos to an
escrow account. By these actions, the user shows her commitment to use up to A Algos to buy
tokens at a maximum price of B Algos per token (or, of course, at a lower price). The user-
chosen price B is typically equal to the current price P, but could be higher.

In response to her call, upon verifying the transfer of A Algos and making sure that B is at least
equal to the current price P, my application

¢ stores the numerical value 4 into the user’s local state, and

e increases by A the global-state variable CM.
Note that the reason that the user needs to specify her maximum price per share B is that, due
to asynchrony, the price P may become lower by the time the user’s bid enters the blockchain.

Of course, a user can post multiple bids. In fact, up to 16 bids, if she is using a single account. If
she wants to add more bids, she can open additional accounts and post all the bids she wants.

This bidding process continues until the ratio CM /P becomes at least N. At that point, the
application stops lowering the current price, and the clearing price € coincides with the price P
of the last bid.

Once the bidding ends, something that can easily be detected from the global state, every user
who previously submitted a bid can now invoke the application again. Avoiding “corner cases”
that can be properly handled anyway, the post-bidding activity works as follows. For each of her
bids, the application determines, based on her local state and the global state, whether the bid
won her some tokens or not. In the latter case, the A Algos of her bid are immediately freed
from escrow and returned to her account. In the former case, the application computes how
many tokens the user has actually won, at the clearing price, due to her winning bid. (In
absence of ties and other corner cases, the bid wins A/C tokens for its user.) This number of

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
https://www.algorand.com/

tokens will be immediately transferred from my account to hers, and the A Algos she originally
put in escrow are immediately released and transferred to my account.

NOTE: Algorand’s ability to handle auctions at layer 1 was indeed one of the main reasons for
the Government of the Marshall Islands to select Algorand for its CBDC.

Security Tokens

Algorand Standard Assets (ASAs) enable a user to create tokens with specialized manager,
freeze, reserve, and clawback addresses. ASAs solve the majority of security-token use cases
without needing to write any contract code. However, your use case may require more than
ASAs. For instance, you may want to launch a security token requiring customized restrictions
on who can trade the token with whom.

Algorand's stateful TEAL contracts allow you to do just that. At the highest level, the contract’s
global state may specify the general parameters of the token, such as the manager and freeze
addresses, the matrix of authorization groups, and how these groups can trade with each other
while the assigned authorization group of each account is stored in the account’s own local
state.

NOTE: Algorand’s stateful TEAL ability to handle such complex functionalities at layer 1 is
indeed one of the main reasons for which Republic, a consortium of hundreds of thousands of
accredited investors, has chosen Algorand to launch its own security token.

Crowdsourcing

A user can use Algorand’s stateful TEAL account in order to build her gofundme application. If
the fund goal is met, the application creator will be allowed to claim the funds. Otherwise, the
funds are returned to the donors.

In this example, the application uses the global state to keep track of the fund goal, the running
total of donations, as well as start and end times. When an opting-in user donates, her donation
amount is recorded in her local state. A separate, stateless contract holds the total donations,
with logic that allows for spending based on the aforementioned conditions.

Decentralized Exchanges

Atomic transfers, a major prior example of Algorand’s stateless TEAL technology, enable
network users to trade specific assets they own in a most secure and efficient way, without
relying on any third parties. In order to use an atomic transfer, however, you must know who is
willing to sell what and for what price. But what if you do not have such knowledge?

Stateful TEAL applications can fill this gap by acting as an order book. A user can post an order
to buy or sell which is stored in their local storage for that order book application. The
application’s logic ensures that transfers can only occur if both the buyer's and the seller’s
conditions are met. A separate, stateless TEAL contract authorizes the transfer from a user
account if her own sell/buy conditions and those of the other user's are met.

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
https://www.algorand.com/

Transparent Banking

Algorand freely allows users to store Algo and other asset balances. But that stored value is
going to waste just sitting there. Here is where an Algorand banking application can provide
value for both the asset owners and prospective businesses or for individuals looking for loans
or financial aid.

In essence, a user decides to hand over a set of funds to a banking application they trust,
thanks to the full transparency around the application that the blockchain provides. The banking
application keeps track of the held balance in the user’s local storage, and deposits interest
payments to that user for holding her money. Separately, the bank could store the total held
value and its reserve amount in a global variable, which could be tied to a separate, stateless
account that holds the bank’s reserve. The logic of both the stateful and stateless smart
contracts ensures that (1) the bank cannot go below a certain minimum in its reserves, and (2)
the users can withdraw funds (with proper restrictions) freely. Everything is on the blockchain,
safe and transparent.

Conditional Asset Sales

Imagine having the ability to enforce that any sale of a particular asset requires a 5%
commission back to the asset creator, or perhaps to a government entity as some type of tax.
This condition is difficult to enforce off the blockchain since we must rely solely on the honesty
of sellers and buyers, and on our legal institutions, which are not always as speedy as desired.
On Algorand, we can bolster this application with smart-contract logic that secures such
honesty. Specifically, | can create an asset, frozen by default, that can only be unfrozen and
transferred when grouped with a set of transactions that ensure that a commission payment is
also sent. In particular, one of those group transactions is a call to the governing application
that, using its global state to specify the asset ID and any conditions required for transferring the
asset, can check that those conditions are indeed met. The transaction group would also
include transactions to unfreeze the asset, prior to checking the conditions, and then to refreeze
the asset after the transfer.

3. PyTEAL.: Writing Stateful TEAL Contracts in Python

Writing smart contracts can be difficult. The code has to approve or reject transactions carefully,
and may implement meticulous dApps. It is thus much easier to write smart contracts in Python
rather than using TEAL opcodes, much like it is easier to write in a high level language rather
than assembly. For these reasons, Algorand has developed PyTEAL.

THE ORIGINAL PyTEAL

Earlier this year, Algorand introduced PyTEAL, python bindings for its stateless smart contracts
platform. Instead of dealing with basic arithmetic and condition operations, pushing and popping
variables from the stack, PyTEAL allows the developer to create objects representing local
variables, and run operations such as arithmetics, comparisons, signature verification, and
hashing on them. The python code then compiles into TEAL. Essentially, PyTEAL gives the
developer the full power of TEAL at the full speed of Algorand.

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
https://medium.com/algorand/pyteal-writing-algorand-smart-contracts-in-python-acfd7f7a48dd

THE NEW PyTEAL

Today, we extend PyTEAL to stateful smart contracts. Thus, developers can keep focus on the
application’s logic while PyTEAL simplifies access to the application’s local and global

state. Essentially, PyTEAL provides a simple Pythonic API that allows to Put, Get, and Delete
to the smart contract’s state. Under the covers, PyTEAL translates these commands to the
TEAL opcodes that implement them. Therefore, it allows writing sophisticated applications in a
much simpler way and with comparatively few lines of code. As one example, we've used
PyTEAL to create a smart contract implementing security tokens. This example is available
online: https://github.com/jasonpaulos/pyteal/blob/logicsig-v2-

backup/examples/security token.py

WHY TO LOVE PyTEAL
PyTeal is great:

« Modularity - Easily organize smart contract code into logical sections using a popular,
well-known language.

e Interoperability - As its own Python library, use it alongside other Python libraries and
leverage their capabilities for more productive coding.

« Simplicity - Easily import data across multiple smart contracts in a single development
environment.

In Sum

In sum, stateful TEAL and the new PyTEAL extension make Algorand’s layer-1 smart contracts
not only more powerful and efficient than ever, but also easier to use.

So, do not walk, but run to use them!

www.algorand.com

http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
http://www.algorand.com
https://github.com/jasonpaulos/pyteal/blob/logicsig-v2-backup/examples/security_token.py
https://github.com/jasonpaulos/pyteal/blob/logicsig-v2-backup/examples/security_token.py

SILVIO MICALLI | Founder, Algorand

Silvio Micali has been on the faculty at MIT, Electrical Engineering and Computer Science Department,
since 1983. Silvio’s research interests are cryptography, zero knowledge, pseudorandom generation, secure
protocols, and mechanism design and blockchain. In particular, Silvio is the co-inventor of probabilistic
encryption, Zero-Knowledge Proofs, Verifiable Random Functions and many of the protocols that are the
foundations of modern cryptography.

In 2017, Silvio founded Algorand, a fully decentralized, secure, and scalable blockchain which provides a
common platform for building products and services for a borderless economy. At Algorand, Silvio oversees
all research, including theory, security and crypto finance.

Silvio is the recipient of the Turing Award (in computer science), of the Gddel Prize (in theoretical computer
science) and the RSA prize (in cryptography). He is a member of the National Academy of Sciences, the
National Academy of Engineering, the American Academy of Arts and Sciences and Accademia dei Lincei.

Silvio has received his Laurea in Mathematics from the University of Rome, and his PhD in Computer Science
from the University of California at Berkeley.

www.algorand.com

http://www.algorand.com
http://www.algorand.com
https://www.algorand.com/

